

INSTITUTE OF COMPUTER SCIENCE

Department of Computer Science and Mathematics

Master Thesis

Modeling Nomisma ontology
and

Comparing Solutions for Uncertainty

Presented by

Ram Sabah & Zeena Sabah

Submitted to
Dr. Karsten Tolle

Big Data Lab Director

Prof. Dr. Hendrik Drachsler
Scientific Director of studiumdigitale at Goethe-University

Frankfurt, June 07, 2022

 I

Erklärung/Declaration
Hiermit versichere ich, dass ich diese Arbeit selbstständig verfasst und keine anderen als

die angegebenen Quellen und Hilfsmittel benutzt habe.

I hereby declare that I have created this work completely on my own and used no other sources

or tools than the ones listed.

Ram Sabah

 Frankfurt, June 07, 2022 Full Name

 II

Erklärung/Declaration
Hiermit versichere ich, dass ich diese Arbeit selbstständig verfasst und keine anderen als

die angegebenen Quellen und Hilfsmittel benutzt habe.

I hereby declare that I have created this work completely on my own and used no other sources

or tools than the ones listed.

Zeena Sabah

 Frankfurt, June 07, 2022 Full Name

 III

Acknowledgment

At this point, we would first like to thank Dr. Karsten Tolle for his support in writing our
master thesis.

Thank you so much for always having an open ear for our questions and for guiding us in
taking the right steps through the entire process.

We would like to thank Dr. David Wigg-Wolf for his support in creating the Nomisma-
Cookbook and for his feedback, thank you very much.

Many thanks to Dr. Martin Doerr for responding to our inquiry regarding the uncertainty
solution proposals issued in CIDOC-CRM.ORG.

We would also like to thank our second examiner Prof. Dr. Hendrik Drachsler for the time
and effort, thank you very much.

Finally, a debt of gratitude to our mother Nawal and our brother Sam for all their support
and love, for encouraging us to give our best and move forward. Without you, none of this

would have been possible.

 IV

Abstract

This thesis deals with the modeling of the Nomisma-Ontology, the modeling and evaluation

of solutions for handling uncertainties in the field of numismatics.

Ancient coins have archaeological, cultural, and historical importance. The

publication and linking of knowledge about these coins offers an enriched understanding of

cultural heritage. The Nomisma.org is a collaborative project that provides digital

representations of numismatic concepts according to Linked Open Data principles. The

modeling use cases of the Nomisma-Ontology introduced in this thesis are recommended

practice examples, following which will promote better interoperability. This thesis also

presents two suggested approaches for modeling the layers of a hoard vessel, one of which

uses Nomisma-properties, and the other uses the RDF-Collection.

A large number of ancient coins are strongly damaged what make their identification a

difficult task. In some situations, the archaeologist is uncertain about specific features of a

coin - for example, it is uncertain whether Coin_x shows a picture of Titus or of Nero, it is

uncertain that Coin_y was minted in the ancient city Comama. Although this information is

unconfirmed, it is still very valuable and need to be published and made distinguishable from

certain information. This thesis describes and evaluates approaches/solutions for dealing with

such uncertainties. To evaluate the solutions, we run SPARQL queries on the data modeled

according to each solution and measure the runtime and memory consumption of the queries.

Overall, the solutions that requires minimal number of triples to express uncertainty has less

query runtime. Memory consumption depends on the size of the queried data.

 In order to the uncertainty solutions on large datasets of 100K- to 1M-coins,

we created a web application, implemented the proposed solutions within it and used it to

generate an RDF/XML (or Turtle) file from a given Excel/CSV file based on the selected

solution. This web application, called SAUN, can also visualize the generated RDF/XML

file as an RDF-graph as well as display and search all triples contained in the generated file.

Keywords: Nomisma.org, data modeling, handling uncertainty, RDF/XML, Turtle,

SPARQL.

 V

 VI

Contents
1. INTRODUCTION .. 1

1.1 MOTIVATION .. 1
1.2 STRUCTURE OF THE THESIS .. 3

2. THEORETICAL FOUNDATIONS ... 5
2.1 SEMANTIC WEB AND ONTOLOGY LANGUAGES ... 5

2.1.1 Resource Description Framework RDF and RDF Schema ... 6
2.1.2 RDF/XML Serialization Syntax ... 8
2.1.3 SPARQL Query Language ... 15
2.1.4 Linked Open Data .. 19

2.2 PRESENTING ARCHAEOLOGICAL ARTIFACTS ON THE WEB ... 21
2.3 SUMMARY .. 23

3 MODELLING STRUCTURED DATA ... 24
3.1 MODELLING NOMISMA ONTOLOGY ... 24

3.1.1 Best practices Use Cases ... 25
3.1.2 Nomisma.org CookBook .. 32

3.2 MODELING THE LAYERS OF A HOARD VESSEL ... 33
3.2.1 Solution 1: Using Nomisma-Properties for Sequencing the Units of Stratification 33
3.2.2 Solution 2: Using RDF-Collection ... 37

3.3 SUMMARY .. 39
4. MODELING UNCERTAINTIES IN ANCIENT COINS .. 41

4.1 APPROACHES FOR MODELLING OF UNCERTAINTIES IN ANCIENT COINS .. 41
4.1.1 Solution 1: RDF-Reification-Based Approach by CIDOC CRM .. 43
4.1.2 Solution 2: Adding a Resource Directly to the Property Path ... 44
4.1.3 Solution 3: Assigning Reliability Instead of Uncertainty .. 45
4.1.4 Solution 4: Using CRMinf and Assigning Belief Values .. 48
4.1.5 Solution 5: Extending CRM with Properties of Properties ... 49

4.2 FURTHER APPROACHES FOR MODELING UNCERTAINTY .. 51
4.2.1 Solution 6: RDF-Reification with Extended Date/Time Format Ontology (EDTFO) 52
4.2.2 Solution 7: Based on Solution 2 and Extended Date/Time Format Ontology (EDTFO) 53
4.2.3 Solution 8: A New Approach Based on Using un:hasUncertainty .. 54

4.3 RDF-STAR .. 57
4.4 SUMMARY .. 60

5. IMPLEMENTATION OF THE UNCERTAINTY SOLUTIONS AS WEB APPLICATION 61
5.1 REQUIREMENTS ... 62

5.1.1 MVC Architecture .. 63
5.1.2 Input-File ... 63
5.1.3 Technologies Used ... 64

5.2 DEPLOYING SAUN ... 66
5.2.1 Preparing the Input data ... 66
5.2.2 Implementing the Uncertainty Modeling Solutions .. 67

5.3 SUMMARY .. 72
6. EVALUATION OF THE UNCERTAINTY SOLUTION .. 73

6.1 RUNTIME AND MEMORY-USAGE MEASUREMENT ... 73
6.2 EVALUATION ... 80

 VII

7. SUMMARY AND CONCLUSION .. 82
8. BIBLIOGRAPHY ... 84
LIST OF FIGURES ... 87
LIST OF TABLES ... 89
APPENDICES ... 92
APPENDIX 1: NOMISMA.ORG-COOKBOOK ... 93
APPENDIX 2: RDF/XML FORMAT OF THE UNCERTAINTY-SOLUTIONS .. 94
APPENDIX 3: QUERIES .. 100
APPENDIX 4: TABLES .. 101
APPENDIX 5: MAIN CLASSES AND FUNCTIONS OF SAUN ... 104
APPENDIX 6: SKOS & OWL .. 125

Introduction Chapter 1

 1

1. Introduction
Ancient coins carry rich information of cultural and historical events, they are very important

archeological items. In this thesis, we will present modeling use cases of the Nomisma.org

ontology, which provides digital representations of numismatic concepts based on the

concepts of Linked Open Data and which can serve as a paradigm for dealing with digital

corpora in archaeology (Wigg-Wolf, Tolle, & Kissinger, 2019). As well as modeling and

evaluating solutions for dealing with uncertainties in the domain of numismatics.

 This chapter aims to provide a motivation for these two main goals of this work and

what is covered in each chapter.

1.1 Motivation
Numismatics the study or collection of currency, including coins and related objects is a very

important research topic. Coins, perhaps in particular, carry rich and accurate information

about cultural heritage and about the events that occurred during their time in circulation

(Kemmers & Myrberg , 2011). They are identified by their physical characteristics such as

size, shape, weight, material, etc. By appearance like marks, inscriptions, dates, and

depiction, which usually refer to the ruling authority, to deity, and to events (Wickens). These

features and more are important in identifying, classifying, and studying these artifacts, and

the publication and linking of knowledge about them need to promote interoperability

between the different hosting institutions. The need for unified collection, management and

exchange of such knowledge was the motive to adopt the semantic web technologies for

creating ontologies and providing a common digital representation of numismatic concepts

(Moraitoua, Christodouloua, & Caridakisa, 2021).

 Nomisma.org (Ackermann, et al.) is a collaborative project that provides pre-defined

digital representation of numismatic concepts based on the linked open data principles.

Though this project is still under implementation and is subject to constant expansion and

correction, it provides up to this day a rich vocabulary in the domain of numismatics and over

7000 keywords in different numismatic concepts. Objects like coins when linked to

Nomisma.org are displayed at resources like as Pleiades and Pelagios (Pelagios Network)

Introduction Chapter 1

 2

what will enrich their information with data from other open resources (Wigg-Wolf, Tolle,

& Kissinger, 2019). This makes the data more visible and more available for research

projects in other disciplines.

In this thesis we introduce some modeling use cases of the Nomisma-Ontology as

recommended practical examples, following which will promote better interoperability.

Alongside the Nomisma classes and properties, we will use, when needed, some terms from

different ontologies like CIDOC-CRM and its extensions, Dublin-Core metadata terms,

Skos, etc. to give examples.

Though this may sound smooth and straightforward, coins are not always perfectly preserved

and have all their features clear and visible. Due to corrosion or wear occurring as a result of

using thiese coins or due to improper preservation, they can be very difficult to identify even

for experts. In such cases, numismatists often find themselves uncertain of the correctness in

distinguishing the features of these coins. For instance, it is uncertain whether Coin_x shows

a portrait of Titus or of Niro, it is uncertain that Coin_x was minted in Comama, the

production date of Coin_y is uncertain, and many more of such examples of uncertainty.

Uncertainty occurs not only because of the bad state of the object to be described, but also

because of other reasons, types of uncertainty (Laskey, et al., 2008).

“Archaeological information is by its very nature complex and uncertain.”

 (Cripps, Paul J., 2012, S. 487)

There is not yet a standard method for modeling uncertainties, it is an issue still open for

discussion and suggestive solutions. A goal of this thesis is to investigate solution suggestions

for modeling uncertainties in the domain of numismatics. This work (Uncertainty Handling

for Ancient Coinage., 2014) presented two modeling solutions and in dissections in

communities under (CIDOC CRM, 2014) we found three more solution suggestions for

modeling uncertainty. Based on our understanding of the situation, we also propose three

other solutions, two of which based on the first two solutions proposed in (Uncertainty

Handling for Ancient Coinage., 2014).

Introduction Chapter 1

 3

 To test and compare these solution suggestions on datasets of different sizes, by

measuring runtime and memory consumption when querying data, we created a web

application that generates an RDF/XML (or Turtle) file from a given Excel or CSV file and

a selected uncertainty modeling solution, that we implemented in the application.

Questions and Objectives

• How to use the Nomisma-Ontology?

- Objective is to give modeling use cases of the Nomisma-Ontology and create

the Nomisma-Cookbook.

• How to model the layers of hoard vessel?

- Objective is to suggest solutions for modeling the layers within a hoard vessel.

• How to model uncertainties in the domain of numismatics?

- Objective is to investigate, compare and evaluate the solution proposals exists

for modeling uncertainties.

1.2 Structure of the Thesis
Chapter 2 describes the theoretical foundations to this thesis and is of two parts. First part

deals with the semantic web, its technologies, and standards. second part gives an overview

of archaeological artifacts with a focus on ancient coins and hoards.

Chapter 3 consists of two sections, the first presents few modeling use cases of the

Nomisma.org-Ontology and the second describes two approaches for modeling the layers of

a hoard vessel.

Chapter 4 presents eight approaches for modeling the uncertainties, and a short overview of

RDF-Star.

Chapter 5 is about creating a web application and implementing the eight uncertainty

modeling solutions within it to generate an RDF/XML file from the input data, which is in

Excel or CSV.

Introduction Chapter 1

 4

Chapter 6 discusses the process and results of measuring the runtime- and memory

consumption- of querying data modelled according to the uncertainty solutions.

Theoretical Foundations Chapter 2
Semantic Web and Ontology Languages

 5

2. Theoretical Foundations
This chapter deals with the theoretical foundations of the topics covered in this thesis.

Beginning with a brief introduction to the semantic web with, its technologies and standards,

then an overview of archaeological artifacts with a focus on ancient coins and hoards.

2.1 Semantic Web and Ontology Languages
Before we try to understand the semantic web, we must first define an important concept

which is “Data Integration on the web”. Data integration on the web (Yu, 2011) is the

process of collecting and merging data from multiple recourses and presenting it in a way

useful to users. So, when we search for something on the web (may it be a person, an object,

an event) intending to collect all the information possible about it, we may have to manually

go through multiple websites to find what’s needed (we self must integrate those

information). However, if the thing we are looking for was presented on the web in a way

understandable for our computers, they will be able to do the data integration for us retrieving

whatever we want to know.

To make this possible, data on the web should be in the form of statements (Berners-Lee,

2006), i.e., to a resource (subject) there is a value (object) connected to it as a relationship

property (predicate). Each statement represents an aspect, a piece of knowledge about the

given resource. These statements need to be modeled in a way understandable for a software

program (an agent) and represented in the same structure on the web. The agent should be

able to collect these statements in their given structure. To make such data integration

possible for the agent some requirements must be met (Yu, 2011):

• Statements represent knowledge about a "thing" on the web and must be modeled in

a machine-understandable and processable manner.

• Statements must have a common pattern, i.e., the model of the statements must be a

standard acceptable by all websites.

• The statements must follow predefined common terms and relationships (ontology)

depending on the entity they describe. For instance, a novel has title, an ISBN, an

author, and a price, while a person has name, birthday, age, etc.

Theoretical Foundations Chapter 2
Semantic Web and Ontology Languages

 6

• These common terms and relationships must first be defined, and the different

websites must use those terms and relationships when creating the statements.

• The common terms and relationships used to create the statements must be

understandable for the agent so that it can understand the statements at all.

• The agent should be able to draw conclusions based on its understanding of the terms

and relationships. To give an example, comparing the ISBN number from different

sources, taking into account the knowledge expressed by the common terms and

relationships, it should be possible to conclude that it relates to the same novel.

• The agent must be able to process queries on the statements.

The semantic web makes this possible and lead to creating such agent by providing the

technologies and standards required.

The term “Semantic Web” was originally introduced by World Wide Web Consortium

(W3C) director Sir Tim Berners-Lee:

“The Semantic Web is an extension of the current Web in which information is given well-

defined meaning, better enabling computers and people to work in cooperation.”

(Berners-Lee et al.2001).

Another definition of the semantic web is by Liyang Yu in his book A Developer’s Guide to

the Semantic Web:

“The semantic web can be understood as a brand-new layer built on top of the current

Web, and it adds machine understandable meaning (of “semantics”) to the current Web.”

(Yu, 2011).

Now that we have learned the definition of the semantic web, we will next look at some of

its technologies and standards.

2.1.1 Resource Description Framework RDF and RDF Schema
Since the web is filled with a huge amount of non-machine-understandable information,

almost exclusively intended for human consumption, it is very difficult to automate anything

on the web or deal with it manually (Yu, 2011). The W3C proposed a solution to this issue

Theoretical Foundations Chapter 2
Semantic Web and Ontology Languages

 7

which is to use metadata to describe the information contained on the web, because metadata

is machine-readable, the automated processing of resources would be possible. With this, the

Resource Description Framework (RDF) was introduced by the W3C in early 1999 as a

standard for describing metadata and supporting interoperability between applications that

exchange machine-understandable information on the web. Since the introduction of the

Semantic Web in 2001, the RDF specification has changed a lot so that it is used to describe

any piece of knowledge that exists in the real world (Yu, 2011).

With RDF specification, concept, schema, syntax and semantics, RDF can be

described as the language and framework for representing information and expressing

statements on the web using formal vocabularies. It should be flexible and scalable so that

all information can be presented at any point, and it should provide a mechanism to connect

the distributed information on the web.

An RDF data model is used to describe information about the world. The main idea

of this model is to divide the information into small sections (pieces of knowledge,

statements) with well-defined semantics following simple rules in order for machines to

understand and process it (Yu, 2011):

• every piece of knowledge represented in a statement, also called a “triple”, must be in

the form of subject-predicate-object, and this order is unchangeable. Subjects and objects

describe resources in the real world. Predicates, also called properties, represents the

relationship between subjects and objects.

• Names of resources and properties must be globally identified by e.g., a Uniform

Resource Identifier (URI). While URL (Uniform Resource Locator) can identify and

retrieve only resources that are directly retrievable on the Web like a webpage, a URI

(Uniform Resource Identifier), a general form of identifier, is used to identify and retrieve

anything on the web.

• Objects, also called “property value”, can hold either a literal or a resource. RDF literals

are simple raw text data such as names, ages, dates, measurements, etc. Literals can

optionally be language specified by giving a tag representing the language in which the

raw text is written, for example en for English, de for German (Deutsch), ar for Arabic,

etc. And can also be datatype specified by giving the type URI of the data represented in

Theoretical Foundations Chapter 2
Semantic Web and Ontology Languages

 8

the literal, for example string for text, integer, decimal, double for numbers, etc. The data

type defined in XML-Schema is often used for these URIs, however any other data type

URI can also be used. A literal holding the letter A with a language tag en is different

from that holding the same letter A with datatype string and both are different from the

one holding the letter A without language tag or datatype. Statements, each containing

one of these literals as their object, are also completely different and cannot be inferred

from one another (Yu, 2011).

• An RDF statement or a set of RDF statements can be represented as an RDF graph where

subjects and objects are nodes in the graph and predicates (properties) are edges

connecting a subject-node to an object-node.

• An RDF statement can only model a single piece of knowledge, a binary relationship

between a given subject and object. To model multi-relationships, an intermediate

resource known as Blank-node is used. With the use of blank nodes, we can model the

so-called RDF-Reification, a statement about a statement. A blank node has no URI as

an identifier, instead it is assigned a local identifier so it can be referenced within an RDF

document.

To summarize the above, an RDF graph data model represents statement in the form of

subject, predicate, and object. The subject and object are represented as nodes in the graph

and the predicate is the edge connecting them. Each set of subject, predicate and object is

called an RDF-Triple. Predicates are also called Properties and objects are property-values.

Nodes (subjects and objects/property-values) can be URIs, literals, or blank nodes, and edges

(predicates/properties) are URIs.

In Order to store and transmit the RDF graph model, an RDF serialization syntax is

required. For this purpose, there are several serialization syntaxes like Notation 3, Turtle, N-

Triples and RDF/XML. In this thesis we will focus on the RDF/XML serialization syntax.

2.1.2 RDF/XML Serialization Syntax
RDF/XML is a serialization syntax defined by the W3C specifications used to represent an

RDF graph as an XML document (Yu, 2011). AS previously mentioned, RDF uses URIs as

identifiers for nodes (subjects, objects) and edges (predicates). A set of these URIs are called

Theoretical Foundations Chapter 2
Semantic Web and Ontology Languages

 9

vocabularies (also called ontologies, will be discussed later) and composed of a namespace

name (a leading string commonly shared in each set of URIs) followed by vocabulary names

(syntax-, class-, property-, and resource names).

 The URI namespace-name string is associated with a namespace-prefix (usually rdf:

for RDF-Syntax, and rdfs: for RDF-Schema) in the namespace declaration part of an XML

document. These namespaces are usually used within an XML document as qualified names

(QNames), which contain a namespace prefix and a local part of the vocabulary name,

separated by a single colon (example, rdf:subject, rdf:object). The RDF namespace prefix for

RDF-Syntax shared by all RDF vocabulary names is:

 http://www.w3.org/1999/02/22-rdf-syntax-ns#

With this vocabulary URI can be abbreviated, e.g., instead of writing

http://www.w3.org/1999/02/22-rdf-syntax-ns#Description each time we

want to describe an item within an XML document, we write rdf:Description. However,

subjects, objects, and data type URIs cannot be abbreviated like this. Therefore, some RDF

documents uses XML entities, that can associate a prefix with a namespace name (the shared

string) as follows:

<!DOCTYPE rdf:RDF [<!ENTITY ex "http://www.example.org/example#">

Or, using the xml:base attribute along with rdf:ID for the subject, e.g., rdf:ID="item_1". The

xml:base controls which base is used to fix the rdf:ID value. RDF will then generate the URI

as follows: xml:base + "#" + item_1. To use the xml:base attribute with, for example

rdf:about or rdf:resource, the "#" must be added to the name, e.g., rdf:about="#item_1". List

2. 1 is an example of a simple RDF/XML document.

RDF-Vocabulary-Names:
The RDF Vocabulary consists of only the following names preceded by the namespace
prefix (RDF 1.1 XML Syntax, 2014), (Yu, 2011):

Syntax names: rdf:RDF, rdf:Description, rdf:about, rdf:resource, rdf:ID, rdf:nodeID,

rdf:datatype, rdf:parseType, rdf:li.

Class names: rdf:Statement, rdf:Property, rdf:XMLLiteral, rdf:List, rdf:Seq, rdf:Bag,

rdf:Alt.

Theoretical Foundations Chapter 2
Semantic Web and Ontology Languages

 10

Property names: rdf:subject, rdf:predicate, rdf:object, rdf:type, rdf:value, rdf:first,

rdf:rest_n.

Resource names: rdf:nil.

Example of an RDF/XML document describing that; Item_1 is of type coin with value 1d,

represented in a graph in Figure 2. 1 can be written as shown in List 2. 1.

List 2. 1: Example of using RDF/XML format to describe that item_1 is of type coin and
has value 1d.

1. <?xml version="1.0"?> <!--XML version-->
2. <!--Using XML Entity-->
3. <!DOCTYPE rdf:RDF [<!ENTITY ex "http://example.org/example#">]>
4. <!--Namespace declaration-->
5. <rdf:RDF
6. xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
7. xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
8. xml:base="http://www.example.org/coin_collection#">
9. <!--Item description-->
10. <rdf:Description rdf:about="#item_1"> <!—or, rdf:ID=“item_1“-->
11. <rdf:type rdf:resource="&ex;coin"/>
12. <rdf:value rdf:datatype="&ex;coin_value"> 1 d </rdf:value>
13. </rdf:Description>
14. </rdf:RDF>

Figure 2. 1: RDF Graph the RDF/XML file describing that item_1 is of type coin and has value 1d.

Line 1 indicating the version of XML being used, lines 2,4 and 9 are comments inside of <!-

- --> these brackets. Line 3 shows the use of an XML entity to associate the namespace string

“http://example.org/example#” to a prefix “ex” so there is no need to rewrite the whole

namespace name string every time we want to use it in the subject, object or datatype position

Theoretical Foundations Chapter 2
Semantic Web and Ontology Languages

 11

(lines 11 “&ex;coin” and line 12 “&ex;coin_value”). Line 4 creates an <rdf:RDF element,

showing that this XML document is an RDF model, that ends at line 14 with </rdf:RDF>.

Lines 6 and 7 include namespace names declarations by using an xmlns attribute and

the namespace prefix by which the namespace name is going to be referenced inside the

document. In line 8 we used the xml:base attribute, this also to shorten the document by

avoiding writing the whole namespace name string every time it is required (line 10

"#item_1"). We can skip adding a "#" to the rdf:about value here if we used rdf:ID instead of

rdf:about, because when the RDF parser indicates the xml:base attribute, it will generate the

URI by combining the namespace name string defined with xml:base with a "#" and then the

value of rdf:ID. With rdf:Description in line 10 we say that these lines 10-13 (ending with

</rdf:Description) are describing the item specified in rdf:about "item_1" which URI is

“http://example.org/example#item_1” and that is of type coin with value 1d.

For a quick summary, RDF/XML is an RDF serialization syntax used to represent an

RDF graph as an XML document. RDF uses URIs as identifiers for subjects, objects, and

properties. A set of such URIs is called a vocabulary (an ontology) created for a specific

reason/domain, i.e., a vocabulary is domain specific.

RDF provided a set of terms URIs (RDF vocabulary) to represent an RDF graph

model as an XML document. In this section we have listed those terms and gave an example

on how to use a few to describe that an item “item_1” is a “coin” and has value 1d. We also

showed how to define namespaces and reference them within a subject, object, and datatype.

So, in order to describe an item in the real world we must use classes and properties

(vocabulary/ontology). To have a common language shared, processed, and understandable

by distributed applications, there must be shared rules for creating these

vocabularies/ontologies. In the next section "RDF Schema" we will learn how such a

common vocabulary, with its classes, sub-classes, properties, and the relations between them

are defined.

Theoretical Foundations Chapter 2
Semantic Web and Ontology Languages

 12

RDFS an RDF Schema
RDF Schema or RDFS is a W3C recommendation for describing RDF vocabulary. It

provides language constructs (standard classes and properties) used to describe new classes

and properties (a vocabulary) within an application domain.

“RDFS is a recommendation from W3C and it is an extensible knowledge representation

language that one can use to create a vocabulary for describing classes, sub-classes and

properties of RDF resources”

 (Yu, 2011)

The latest version of RDFS was published in February 2004. Like RDF terms

discussed earlier, RDFS terms are identified by pre-defined URIs, all share the following

leading string:
 http://www.w3.org/2000/01/rdf-schema#

which is usually associated with the namespace-prefix ‚rdfs‘, and that RDFS can be written

in RDF/XML format as well as any vocabulary created by it. The following are RDFS groups

of terms for defining classes and properties (Yu, 2011), (Brickley, Guha, & McBride, 2014):

Groupe of terms for defining classes: rdfs:Resource, rdfs:Class, rdfs:Literal, rdfs:Datatype.

Groupe of terms for defining properties: rdfs:subClassOf, rdfs:subPropertyOf, rdfs:range,

rdfs:domain, rdfs:label, rdfs:comment.

Container classes and properties: rdfs:Container, rdfs: ContainerMembershipProperty,

rdfs:member.

Utility properties: rdfs:seeAlso, rdfs:isDefinedBy.

The term rdfs:Resource represents the root class and every class defined using RDFS terms

is a sub-class of rdfs:Resource. In other words, every item described in RDF is an instance

of rdfs:Resource. The following

List 2. 2 is an example of defining classes and properties for the vocabulary

“my_vocabulary”, with graph illustrated in Figure 2. 2.

Theoretical Foundations Chapter 2
Semantic Web and Ontology Languages

 13

List 2. 2: Defining classes and properties for the vocabulary “my_vocabulary”.

1.<?xml version="1.0"?> <!--XML version-->
2.<!--Using XML Entity-->
3.<!DOCTYPE rdf:RDF [
4. <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">
5. <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#">
6. <!ENTITY myVocab "http://my-vocabulary.com/my-vocabulary#">]>
7.<!--Namespace declaration-->
8.<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
9. xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
10. xml:myVocab="http://my-vocabulary.de/my-vocabulary#">
11.<!--Classes definition-->
12. <rdfs:Class rdf:about="&myVocab;Class_1">
13. <rdfs:label xml:lang="en">Class_1</rdfs:label>
14. </rdfs:Class>
15. <rdfs:Class rdf:about="&myVocab;Class_2">
16. </rdfs:Class>
17. <rdfs:Class rdf:about="&myVocab;Class_3">
18. <rdfs:subClassOf rdf:resource="&myVocab;Class_1"/>
19. </rdfs:Class>
20.<!--Properties definition-->
21. <rdf:Property rdf:about="&myVocab;property_1">
22. <rdfs:label xml:lang="en">Property_1</rdfs:label>
23. <rdfs:domain rdf:resource="&myVocab;Class_1"/>
24. <rdfs:range rdf:resource="&myVocab;Class_2"/>
25. </rdf:Property>
26. <rdf:Property rdf:about="&myVocab;property_2">
27. <rdfs:subPropertyOf rdf:resource="&myVocab;property_1"/>
28. <rdfs:range rdf:resource="&myVocab;Class_3"/>
29. </rdf:Property>
30. <rdf:Property rdf:about="&myVocab;property_3">
31. </rdf:Property>
32.</rdf:RDF>

Lines 1-10 specify the XML version and define the namespaces using XML entity and

xmlns attribute. Lines 12-19 define three classes using rdfs:Class (Class_1 - Class_3) with

Class_3 being a subclass of Class_1. Lines 21-31 define three properties (property_1 -

property_3) using rdf:Property. Property_1 has domain Class_1 and range Class_2,

meaning that, the subject used with this property must be is an instance of Class_1, and the

object is an instance of Class_2. For example, may property_1 be “parent_of”, Class_1 be

Theoretical Foundations Chapter 2
Semantic Web and Ontology Languages

 14

“Father” and Class_2 be “Son”. With the domain restriction the subject must be a father

and with the range restriction the property-value must be a son. However, these restrictions

are optional, it is not mandatory that a property be domain and range restricted, e.g.,

property_3 (lines 30, 31). Property_2 (lines 26-29) is a sub-property of property_1 and it

has a different range specification, namely Class_3. To give an example, may property_2

be “hasName” and Class_3 be “Name” we can represent that an instance of class “Father”

hasName an instance of class “Name”, or an instance of another class e.g., a superclass

class “Person” hasName an instance of class “Name”. See that the instance of a class in the

subject position is not fixed, while it is in the object position, the property_value must be an

instance of class “Name”. Figure 2. 2 shows the graph representation of

List 2. 2, for a compact and a better visibility we short cut the namespaces into a

prefix:Class_#/property_#.

Figure 2. 2: Graph representation of our vocabulary in List 2. 2.

At this point, we presented RDFS a W3C recommendation for describing RDF

vocabulary and listed its main terms. We used those terms and created a vocabulary defining

classes and properties and the relation between them. To provide a general overview, we

have not defined a domain for our vocabulary, nor have we given specific labels to the classes

and properties. However, we provided simple examples on what these classes and properties

can be and how to use them. In Appendix 6 we briefly introduce two more Semantic Web

standards namely SKOS and OWL. SKOS is RDF vocabulary for representing KOSs

(taxonomies, thesauri, classification schemes, and more), and publishing them into the

semantic web, and OWL a Web Ontology Language used to define ontologies.

Theoretical Foundations Chapter 2
Semantic Web and Ontology Languages

 15

2.1.3 SPARQL Query Language
SPARQL, stands for SPARQL Protocol and RDF Query Language, is an RDF query

language and data access protocol for the Semantic Web. The SPARQL language includes

IRIs, Internationalized Resource Identifiers, which are a subset of RDF URI References. On

January 2008 SPARQL 1.0 became a standard by the W3C's SPARQL Working Group, and

a newer version SPARQL 1.1 was released on 21 March 2013 as a W3C official

recommendation. A SPARQL 1.1 definition by the W3C SPARQL Working Group (W3C,

SPARQL 1.1, 2013):

“SPARQL 1.1 is a set of specifications that provide languages and protocols to query and

manipulate RDF graph content on the Web or in an RDF store.”

SPARQL 1.1 (W3C, SPARQL 1.1, 2013) includes various specifications, to name a few:

SPARQL 1.1 Query Language for RDF.

SPARQL 1.1 Query Results JSON- CSV- TSV- and XML Formats

SPARQL 1.1 for exchanging answers to SPARQL queries, in JSON, CSV and TSV

SPARQL 1.1 Query Language for executing queries distributed over different SPARQL

endpoints.

SPARQL 1.1 Update Language for RDF graphs.

SPARQL 1.1 Protocol for RDF - means for exchanging SPARQL queries and update requests

to a SPARQL service.

In this thesis we will only be concentrating on SPARQL query language (SPARQL 1.1 Query

Language for RDF). The query language provides four different query forms; SELECT,

ASK, DESCRIBE, and CONSTRUCT. Also here, we will be focusing on the SELECT query,

still, give a brief overview to the remaining three queries, summarized from (W3C, SPARQL

1.1, 2013) / SPARQL 1.1 Query Language.

SPARQL is like RDF in the concept of triples (or triple pattern), i.e., subject, predicate,

and object. However, with the difference that SPARQL triples can contain variables at any

position. The variables can be understood as place holders, defined by a ‘?’ character

followed by a user determined string, e.g., ?variableName. Terms (subjects, predicates, and

objects) defined in a vocabulary with a URI are used by either writing the entire URI inside

Theoretical Foundations Chapter 2
Semantic Web and Ontology Languages

 16

of angle brackets <>, or the short cut using the namespace prefix with the term’s name e.g.,

myVocab:property_1. Namespace names in RDF/XML are defined using xmlns: namespace

prefix as the example below:

 xmlns:myVocab="http://my-vocabulary.de/my-vocabulary#"

in SPARQL they are defined with the keyword PREFIX namespace-prefix: as the example

below:

 PREFIX myVocab: <http://my-vocabulary.de/my-vocabulary#>

Defining a base URI is similar to that in RDF/XML, using the BASE directive at the first

line of a query, example:

 BASE <http://my-vocabulary.de/my-vocabulary#>

A triple pattern in SPARQL may look as follows (Yu, 2011):

1. <http://.../exampleSubject> <http://.../examplePredicate>
 <http://.../exampleObject>.

2. <http://.../exampleSubject> ex:examplePredicate ?varName.

3. ex:exampleSubject ?varName "value".

4. ?varName ex:examplePredicate ex2:exampleObject.

5. ?varNameSubj ex:examplePredicate ?varNameObj.

6. ?varNameSubj ?varNamePred ?varNameObj.

Another concept of SPARQL is called graph pattern, which is a collection of triple patterns

within the curly brackets {}, example in List 2. 3. The graph pattern is used to select triples

from a given RDF graph.

List 2. 3:Example collection of triple patterns, i.e., Graph Pattern.

{
 ?item_1 ex:hasWeight ?weight.
 ?item_1 ex:hasWidth ?width.
 ?item_1 ex:hasHeight ?height.
 ?item_1 ex:hasCreationDate ?date. }

Theoretical Foundations Chapter 2
Semantic Web and Ontology Languages

 17

As you can see the subject variable ‘?item_1’ is the same in every triple. This means that its

value is the exact same in every line result. This graph pattern will try to find all resources

that has all four properties (hasWeight, hasWidth, hasHeight, and hasCreationDate) defined.

In this thesis we will only be using the SELECT query (for the test in Chapter 6), therefore

it’s the only query to be explained here. However, we would like to suggest these works (Yu,

2011) and (Lerning SPARQL) for any interest in learning more about SPARQL.

 The SELECT query form is used to assembly standard queries. It directly returns the

queried variables with new variable bindings into the solution. The SELECT query form has

the following structure: a base directive BASE (optional), list of prefixes with keyword

PREFIX, result description with clause SELECT, selected graph templet with clauses

(FROM, FROM NAMED), query pattern with clause WHERE {…}, condition filters (query

dependent) with clauses (FILTER, FILTER NOT EXISTS, MINUS), query modifiers

(optional) with clauses (ORDER BY, LIMIT).

 The BASE directive and PREFIX definition are as described above. The SELECT

clause specifies the variable bindings, to be returned from the query. Those variable bindings

are user determined preceded by a question mark ‘?’. The FROM and FROM NAMED

clauses are to specify the RDF data set(s) (or named graph(s)) to be queried against. This can

however be optional in some cases, depending on the SPARQL querying service. In some

SPARQL querying services the dataset can be uploaded to the service and no

FROM/FROMNAMED clauses need to be used. If these clauses were used, then the dataset

uploaded to the service will be overridden and the specified dataset is the one to be used.

Multiple number of FROM and FROM NAMED clauses can be used in one query. The

resulting dataset/graph consist of the merged graphs referred to in the FROM clauses, and a

set of graphs, one from each FROM NAMED clause (W3C, 2013).

FROM <http://.../exampleDataset>
FROM NAMED <http://.../examples/item1>
FROM NAMED <http://.../examples/item2>

The WHERE clause contains the triple-/graph pattern that specify what to query for in the

given dataset. To give a query example:

1. PREFIX myVocab: <http://my-vocabulary.de/my-vocabulary#>
2. PREFIX ex: <http://www.example.org/list_of_items#>

Theoretical Foundations Chapter 2
Semantic Web and Ontology Languages

 18

3.
4. SELECT ?varName WHERE{
5. <http://.../exampleSubject> ex:examplePredicate ?varName.
6. }

Lines 1-2 specify the namespace names. In line 4 the SELECT clause specify a binding

variable ‘?varName’ to hold the query result, and starts the WHERE clause. Line 5 shows

the triple pattern that says, for the specified subject <http://.../exampleSubject> return

the property value, stored in the given dataset, and bind it in ?varName.

To return all triples in a given dataset, we can use the following basic query:

1. PREFIX myVocab: <http://my-vocabulary.de/my-vocabulary#>
2. PREFIX ex: <http://www.example.org/list_of_items#>
3.
4. SELECT *
5. FROM <http://.../exampleDataset>
6. WHERE{?s ?p ?o.}

With SELECT * (line 4) we tell SPARQL to select everything within the dataset, specified

via the clause FROM (line 5), WHERE the query result is triples of subjects, predicates and

objects (line 6 {?s ?p ?o}).

 To specify conditions, what results should (not) be returned, we can use the clauses

(FILTER, FILTER NOT EXISTS and MINUS). Note that, FILTER NOT EXISTS, and

MINUS are equivalent. To give an example:

4. SELECT ?s ?w WHERE{
5. ?s ex:hasWeight ?w.
6. FILTER(?w <= "12")
7. }
We skipped the namespace names definition, for being the same in all examples. Starting

with line 4 with the SELECT clause and ‘?s’ ?w the binding variables, WHERE ?s hasWeight

with value ?w. In line 6, we specify a condition, telling SPARQL to only return results with

‘?w’ smaller or equal to 12, using FILTER(?w <= “12”).

 If we used FILTER NOT EXISTS, or MINUS the result will be only those with ‘?w’

bigger than 12, as the example below:

4. SELECT ?s ?w WHERE{
5. ?s ex:hasWeight ?w.
6. FILTER NOT EXISTS(?w <= "12") #or MINUS (?w <= “12”)

Theoretical Foundations Chapter 2
Semantic Web and Ontology Languages

 19

7.}

To specify the order by which we want the results to appear, we can use the ORDER BY

clause with optionally an ascending- ASC() or descending- DESC() order. To limit the query

result to a specific number, we can use the clause LIMIT. To give an example:

4. SELECT ?s ?w WHERE{?s ex:hasWeight ?w.}
5. FILTER(?w <= "12")
6. ORDER BY ASC(?w)
7. LIMIT 10
This query will only return 10 triples from the given dataset, ordered ascendingly.

So far we have learned about the Resource Description Framework RDF and how it is used

to describe pieces of knowledge in a way understandable for machines. We also learned about

the RDF/XML syntax and how it is used to express an RDF knowledge graph as an XML

document. We also learned how to use the RDF-Schema RDFS and the Web Ontology

Language OWL to create an ontology with few defined classes, properties and the relation

between them. And finally, we learned how to query RDF datasets using the SPARQL Query

Language. All these were components of the semantic web and specified as W3C standards.

 The Semantic Web isn't just about publishing data on the web, it's about linking them.

When we publish and connect these machine-readable RDF datasets together, we create an

interconnected web of data that can be explored and understood by both humans and

machines. This brings us to the concept of Linked Open Data.

2.1.4 Linked Open Data
Linked Data is simply the data that has an explicitly defined meaning, published on the web,

machine readable, linked- and can be linked- to other datasets (Yu, 2011, S. 409). The

concept of Linked Data was brought by Tim Berners-Lee in 2006 with the idea publishing

structured data on the web using RDF and linking it to different data sources using RDF links

to create the Web of Data.

“The Semantic Web isn't just about putting data on the web. It is about making links, so

that a person or machine can explore the web of data.”

(Berners-Lee, 2006)

Theoretical Foundations Chapter 2
Semantic Web and Ontology Languages

 20

There are four main rules (Berners-Lee, 2006), (Yu, 2011, S. 412-413) to ensure a correct

application of the idea of Linked Data:

1. Using URIs to name things, as we explained in the previous sections,

2. Use HTTP URIs so that these names can be found by agents (humans and machines),

emphasizing rule 1, making sure that the identifiers are globally unique,

3. URIs should provide useful information when looked up by an agent, for instance,

when defining a person, we refer to them with a URI where we use analogies to

describe information about that person, not a URI of a website that, for example,

belongs to that person,

4. Linking to other URIs, include links to direct agents to other (related) resources.

Linking data can be made in various ways, to give examples:

1. Linking two people within an RDF document ‘<http://example.org/people#>’

<http://example.org/people#person_1> :relatedTo <http://example.org/

people#person_2>

This would be represented in RDF/XML as:

<rdf:Description rdf:about="http://example.org/people#person_1">
 <:relatedTo rdf:resource="http://example.org/people#person_2"/>
</rdf:Description>

2. Linking to different resources, example:

<rdf:Description rdf:about="http://example.org/people#person_1">
 <:hasEMail rdf:resource="eMailIs:person_1@example.com"/>
 <:worksAt rdf:resource="http://example.org/company_xy"/>
 <rdfs:seeAlso rdf:resource="http://example.org/people#person_3"/>
</rdf:Description>

Linked Open Data is simply Linked Data with open license --Creative Commons as example

of open license -- and can be reused for free. Not all Linked Data are open data, it can be

Linked Data that only used internally and not open to the public.

In the next sub-section, we will present an overview of presenting archaeological artifacts

on the web focusing on ancient coins and coin finds, around which this thesis revolves.

Theoretical Foundations Chapter 2
Presenting Archaeological Art ifacts on the Web

 21

2.2 Presenting Archaeological Artifacts on The Web
Ancient artifacts, including coins, have archaeological, cultural and historical importance.

The study, publication and linking of knowledge about these artifacts offers an enriched

understanding of cultural heritage. The need for unified collection, management and

exchange of data between different cultural heritage institutions was the motive to adopt the

semantic web technologies for creating ontologies and providing a common basis for

organizing, modeling and managing cultural data (Moraitoua, Christodouloua, & Caridakisa,

2021).

 Many ontologies were created for the field of cultural heritage, to give few examples:

the International Committee of Documentation Conceptual Reference Model (CIDOC CRM)

of the International Council of Museums (ICOM) and its extentions (CRMinf,

CRMarchaeo,CRMgeo, CRMdig, and more) which provides classes and properties for varios

topics of the cultural heratig domain The Architecture of Knowledge (ArCo) ontology

network, a collaborative work that reuses existing ontologies to build a network of standard

for representing cultural heritage data. And publishing data of the Italian Ministry of Cultural

Heritage (ICCD) as linked open data. Nomisma.org, a collaborative project that provides

stable HTTP based URIs for representing numismatic concepts based on the principles of

Linked Open Data.

The focus of this thesis is on using the Nomisma.org-Ontology for representing

numismatic objects on the web like ancient coins and hoards. Before we dive into the

modeling process in the next chapter, we would first like to give a brief overview about

ancient coins.

Ancient Coins as Carrier of Cultural Heritage

Ancient coins are a very rich historial documents and archealogical objects for the

information they hold about all classes of socity from their production authority to the diffrent

archaeologically traceable stages being in circulation (Kemmers & Myrberg , 2011). They

bear an ensemble of features enriched with historical cultural- and social-events that require

an interdisciplinary approach to understand all their dimensions, their context, and the

societies they link.

Theoretical Foundations Chapter 2
Presenting Archaeological Art ifacts on the Web

 22

A coin's context refers to the different stages of a coin's lifecycle, where each stage

can be examined individually. Four main life stages of coins can be identified, which are:

• Primary context: Production

• Secondary context: Use

• Tertiary context: Deposition or loss, becoming archaeological objects.

• Quaternary context: Retrieval and submission to antiquarian or scientific studies.

Understanding these four stages involves understanding other contextual aspects such as:

temporal, social, ideological, functional, and geographical features surrounding each of these

stages. These contextual aspects can give a broader or more in-depth perspective in observing

these stages. For instance, understanding the social context of a coin as an object means

understanding the functionality of coinage in society and the interactions between people,

between people and objects and between societies, “the use of coins involves all levels of

society” (Kemmers & Myrberg , 2011).

 Coins are historical-archaeological sources, they provide us with evidence from

ancient times. For instance, the production of a coin is mostly related with an issuing

authority, the state, or the ruling power at its time. The issuer determined the purity of the

metal, weight, and the design (e.g., shape, color, iconography) and inscription (legends)

stamped on coins, that identify the legal state of it (Wickens). The value of the coin

(denomination) and the mint itself was mostly determined and run by the state. These

dimensions give a more informative and enforced meaning of the world surrounding the coins

embodying them.

 Not only individual coins and its contexts give broad analysis chances, but also

studying group of coins, that were buried together in antiquity and later found in modern

time, helps evaluating the chronology of coins and analyzing the circulation patterns of them

(Gruber , et al., 2012, S. 264). They can help finding a correlation between their quality and

the time in which they were deposited/buried and learning about other aspects like the

economic conditions of that time period (Oras, 2013).

 These groups of coins, with groups of other valuable ancient items, are

archaeologically known as 'Hoards'. Coins, for example, may have been placed within a

hoard’s vessel at once and the coins themselves may sometimes be arranged according to

Theoretical Foundations Chapter 2
Presenting Archaeological Art ifacts on the Web

 23

their quality, value or according to various standards. In other times, they could have been

stored over a long period of time (Walker, 2018). In either case, such placements may form

layers, whereby each layer can be examined with its content separately. Therefore, it is

required to find a modeling approach for representing these layers.

2.3 Summary
In this chapter we introduced the theoretical foundations of this thesis starting with the

semantic web, describing it as an extention of- or a layer on top of the current web, that gives

well-defined meaning to the information, making them understandable for both humans and

machines. We learned how RDF is used to modeling the statements to represent knowledge

in a machine understandable manner. We learned how to represent pieces of knowledge as

an RDF garph and to convert that into the RDF/XML serialisation syntax, and about RDF

Shame, which we used to create a simple ontology.

The agent (human or machine) must be able to process queries on the statements.

SPARQL, an RDF query language and data access protocol for the Semantic Web. The

semantic web is not only about making data maschine readable, its about linking those data

and in somecases making them open to the public. Linked Open Data, was introduced as the

last topic of the first part of this chapter (the Semantic Web and its technologies).

The second part of this chapter gave an overview of the importance of archaeological

artifacts in understanding cultural heritage, with a focus on ancient coins. And that the study

of 'hoards', groups of valuable archaeological objects, offers a broader perspective on the

interactions between societies. The next chapter presents use cases of modeling information

about ancient coins using the numismatic concepts provided by Nomisma.org, as well as two

approaches for modeling the layers of a hoard vessel.

Modeling Structured Data Chapter 3
Modeling Nomisma Ontology

 24

3 Modelling Structured Data
The machine-readable data is called structured data, it is the data that conforms to a

predefined model or format and is used to create websites that are easily understood by search

engines (Structured vs. Unstructured Data: A Complete Guide). We learned that these

predefined formats are called ‘Ontologies’, and they are domain specific, meaning, they were

created to describe and represent an area of knowledge. The area of knowledge we will be

focusing on in this thesis is the area of numismatics and cultural heritage. In the previous

chapter we learned names of several ontologies in these domain areas including the Nomisma

ontology and CIDOC CRM, to give examples.

In this chapter we will present some approaches for modeling structured data in the

domain of numismatics using the Nomisma ontology, giving some use cases of this ontology

as practice suggestions, of which adherence will provide better interoperability.

3.1 Modelling Nomisma Ontology
Nomisma.org is a collaborative project, Initiated in 2010 by the American Numismatic

Society, to provide stable http based URIs for the digital representation of numismatic

concepts based on the principles of Linked Open Data (Berners-Lee, 2006). These stable

digital representations provide access to reusable information on numismatic concepts to

improve interoperability between distributed numismatic collections and provide

connections to other areas of study.

 Nomisma.org provides not only a wide range of defined classes and properties under

the Nomisma-Ontology, but also over 7000 predefined Nomisma-IDs, as instances of the

Nomisma classes, for representing numerous numismatic concepts, distributed collections of

numismatics and cultural heritage as well as fields of numismatic study. These predefined

property values include various aspects such as: object -type, -material, art/and place of -

manufacture, -issuer, -region, -period and much more.

Modeling Structured Data Chapter 3
Modeling Nomisma Ontology

 25

3.1.1 Best practices Use Cases

This section introduces some use cases of the Nomisma.org ontology and IDs. The modeling

use cases are for the classes and properties listed below. For more use cases please see

Appendix 1. The classes/properties are as defined in (Nomisma Ontology, 2021).

Content: Ethnic, Collection and ReferenceWork, Corrosion and Wear, Denomination,

Hoard, Appearance, Object Type.

Ethnic
Class: nmo:Ethnic. Generally, a tribal or ethnic name appearing on a numismatic object.

Distinct from personal authority as indicated by the presence of ruler's name.

Class Instances: nm:indo-sasanians, nm:dyrrhachii, nm:zaeelii, nm:volga_bulgars.

Object property: nmo:hasLegend. Describes the inscription or printing placed on a

numismatic object as part of the production process.

Use case: Coin_1 has the word ‘zaeelii’ inscripted on it.

Figure 3. 1: Coin_1 has an inscription ‚zaeelii ‘, which is an instance of ‚Ethnic ‘.

<rdf:Description rdf:about="Coin_1">
 <nmo:hasLegend rdf:resource="nm:zaeelii"/>
</rdf:Description>

Collection and ReferenceWork

Class: nmo:Collection. A general term referring to the objects held by an institution, an
individual or the holding entity itself.

Class instances: nm:vatican_museums, nm:goethe_uni_frankfurt_arch_wiss, nm:uva, …

ObjectProperty: nmo:hasCollection. Identifies the collection or repository that holds (or
has held) the numismatic object.

Use case: Coin_1 falls within the "Coin Collections of the Goethe University Frankfurt am
Main".

Modeling Structured Data Chapter 3
Modeling Nomisma Ontology

 26

Figure 3. 2: Coin_1 contains in the coin collection of the Goethe-University.

RDF/XML:
<rdf:Description rdf:about="Coin_1">
 <nmo:hasCollection rdf:resource="nm:goethe_uni_frankfurt_arch_wiss"/>
</rdf:Description>

Class: nmo:ReferenceWork. A published work of reference relevant to a numismatic
object.

Class instances: nm:igch, nm:belfort, nm:prou_mero, nm:head_1911.

Example: ''igch'' stands for "An Inventory of Greek Coin Hoards".
Object Property: nmo:hasReferenceWork. A published work of reference relevant to a
numismatic object.

Use case:

Figure 3. 3: Coin_1 was published in a reference work “An Inventory of Greek Coin Hoards”.

RDF/XML:
<rdf:Description rdf:about="Coin_1">
 <nmo:hasReferenceWork rdf:resource="nm:igch"/>
</rdf:Description>

Corrosion and Wear

Class: nmo:Corrosion. Degradation to a numismatic object due to chemical reaction with
its environment.

Class instances: nm:heavily_corroded, nm:extremely_corroded, nm:lightly_corroded, …

Object Property: nmo:hasCorrosion

Use case: Coin_1 is lightly corroded

Figure 3. 4: Coin_1 is lightly corroded.

Modeling Structured Data Chapter 3
Modeling Nomisma Ontology

 27

RDF/XML:
<rdf:Description rdf:about="Coin_1">
 <nmo:hasCorrosion rdf:resource="nm:lightly_corroded"/>
</rdf:Description>

Class: nmo:CoinWear. Wear on a coin or similar objects that resulted from its use.

Class instances: nm:extremely_worn, nm:lightly_worn, nm:little_to_no_wear, …

Class: nmo:DieWear. Wear on a die that resulted from its use.

Object Property: nmo:hasWear. Describes wear visible on a numismatic object due to
use or circulation, commonly in terms prescribed by "Abnutzung und Korrosion":

Use case:

Figure 3. 5: Coin_1 is extremely worn due to its use

RDF/XML:
<rdf:Description rdf:about="Coin_1">
 <nmo:hasWear rdf:resource="nm:extremely_worn"/>
</rdf:Description>

We first mistakenly thought that corrosion is some sort of wear and created a use case of an

object that has wear with type of wear being corrosion. This was corrected by Dr. Tolle

explaining that wear and corrosion being two different things that are also different in time:

• Wear: Is the wear and tear that occurs during use (circulation) of the coin.

• Corrosion: Describes the process of corrosion (i.e., the change in material) while the

coin is hidden in the ground.

Denomination
Class: nmo:Denomination. Term indicating the value of a numismatic object.

Class instances: nm:chalkous, nm:large_ae2, nm:3-Taler, nm:onkia, nm:denarius, …

Object Property: nmo:hasDenomination

Use case: Coin_1 has value of denarius

Figure 3. 6: Coin_1 has value of denarius.

Modeling Structured Data Chapter 3
Modeling Nomisma Ontology

 28

RDF/XML:
<rdf:Description rdf:about="Coin_1">
 <nmo:hasDenomination rdf:resource="nm:denarius"/>
</rdf:Description>

Hoard

Class: nmo:Hoard. A group of numismatic objects: a store of wealth concealed with intent
of recovery but which, for reasons not usually known to us, was not recovered until modern
times.

Class instances: nm:normanby_hoard, nm:lliria_hoard, nm:brauweiler_hoard, …

Example: Lliria_Hoard. “Was found in 1999, at the Duc of Lliria, a hoard of 5,991 Roman
denarii was uncovered, hidden under the floor of a house.” (Nomisma.org, 2016)

Object Property: nmo:hasFindspot. Describes the location of the discovery of an object,
whether by accident or in archaeological excavation.

Use case: Hoard_1 was found in year ‘1984’, in location_, and contains of table of
content_h1.

Figure 3. 7: Hoard_1 was found in year ‘1984’, in location_, and contains of table of content_h1.

RDF/XML:
<nmo:Hoard rdf:about="http://.../hoard_1">
 <skos:prefLabel xml:lang="en">Hoard 1</skos:prefLabel>
 <nmo:hasFindspot>
 <nmo:Find>
 <nmo:hasDate rdf:datatype="xsd:gYear">1984</nmo:hasDate>
 <crm:P7_took_place_at rdf:resource="http://.../location"/>
 </nmo:Find>
 </nmo:hasFindspot>
 <dcterms:tableOfContents rdf:resource="http://.../contents_h1"/>
</nmo:Hoard>

Modeling Structured Data Chapter 3
Modeling Nomisma Ontology

 29

Appearance
Class: nmo:Mintmark. A mint mark is a letter, symbol or inscription on a numismatic item

indicating the mint where the numismatic object was produced.

Class: nmo:SecondaryTreatment. Anomalies or unusual features which occurred after the

actual production of a numismatic object.

Instances of class: SecondaryTreatment: nm:cut, nm:clipped, nm:bent, nm:halved,

nm:graffito, …

Object Property: nmo:hasObverse. The face of a numismatic object, carrying the
representation, badge, or inscription of the issuing authority.

Object Property: nmo:hasReverse. The face of a numismatic object opposed to the

obverse, or 'tails' in english.

Object Property: nmo:hasAxis. The directional relationship between the obverse and

reverse.

Object Property: nmo:hasIconography. The iconography on a numismatic object.

Object Property: nmo:hasControlmark. A letter, symbol, monogram, or an inscription on

a numismatic object intended to distinguish it as part of a group of numismatic objects within

an issue or series.

Object Property: nmo:hasCountermark. A mark or symbol punched into a coin or similar

object at some point during its time in circulation.

Object Property: nmo:hasPortrait. A portrait on a numismatic object, of a person or deity.

Object Property: nmo:hasLegend. The inscription or printing placed on a numismatic

object as part of the production process.

Object Property: nmo:hasSecondaryTreatment. Unusual features on a numismatic object

occurred after the actual production, e.g., ‘graffito’ a lettering or similar mark.

Use case: Coin_1 has bears date ‘231’, has an iconography of ‘athena’, has some inscription

‘Iω MIRCEA VOEVODA’, a control mark and its edge are serrated.

Use case: Coin_1 has control mark ‘M’, which is a mint mark.

Modeling Structured Data Chapter 3
Modeling Nomisma Ontology

 30

Figure 3. 8: Coin_1 has a control mark ‘M’, referring to the mint.

RDF/XML:
<rdf:Description rdf:about="Coin_1">
 <nmo:hasControlmark>
 <nmo:Mintmark>
 <crm:P190_has_symbolic_content> M </crm:P190_has_symbolic_content>
 </nmo:Mintmark>
 </nmo:hasControlmark>
</rdf:Description>

Use case: Coin_1 has counter mark, an iconography of what appeared to be ‘apollo’, but this
is uncertain (more to modeling uncertainty in the next section).

Figure 3. 9: Coin_1 has an iconography of a deity could be ‘apollo’, punched to it during its circulation, not
part of its production.

Use case: Coin_1 has obverse with portrait of ‘titus’, legend ‘T CAES IMP VESP CEN’, and
a reverse with a graffito ‘CA’.

Figure 3. 10: Describing the obverse and reverse of Coin_1

Turtle-Syntax:
:Coin_1 nmo:hasAxis " 2 " ;

Modeling Structured Data Chapter 3
Modeling Nomisma Ontology

 31

 nmo:hasObverse [nmo:hasLegend " T CAES IMP VESP CEN " ;
 nmo:hasPortrait nm:titus] ;
 nmo:hasReverse [nmo:hasSecondaryTreatment nm:graffito ;
 crm:P190_has_symbolic_content "CA"] .

Object Type

Class: nmo:ObjectType. The type of a numismatic object.

Class instances: nm:coin, nm:Die, nm:token, nm:seal, nm:amulet, …

Object Property: nmo:hasObjectType

Use cases:

Figure 3. 11: The different pre-defined class instances of object type

RDF/XML:
<rdf:Description rdf:about="Object_1">
 <nmo:hasObjectType rdf:resource="nm:coin_weight"/>
</rdf:Description>

<rdf:Description rdf:about="Object_2">
 <nmo:hasObjectType rdf:resource="nm:tokin"/>
</rdf:Description>

<rdf:Description rdf:about="Coin_1">
 <nmo:hasObjectType rdf:resource="nm:coin"/>
</rdf:Description>

These were only few cases of using the Nomisma-ontology with its pre-defined class

instances. One of the main objectives of this thesis was to create some sort of a cookbook

containing these use cases.

Modeling Structured Data Chapter 3
Modeling Nomisma Ontology

 32

3.1.2 Nomisma.org CookBook
The idea was to create a wiki-page containing use cases of the Nomisma-Ontology. We

created the wiki-page 'Nomisma.org Cookbook', first approach was inserting all classes and

properties of the Nomisma-Ontology with the use cases in one page. As serialization syntax

we only used the RDF/XML, and we did not include examples of the existing instances of

the Nomisma classes. The page became too large – over 90 pages in word for Appendix 1 to

give an example – and with a wiki-page one cannot edit the classes and properties

individually nor can include individual editor’s name. Therefore, Dr. Tolle suggested

creating a ‘Post’ for each class and each property instead of one large page and to include

examples of the existing class instances, which we implemented accordingly (Nomisma.org-

Cookbook, 2022).

Also, for the serialization syntax, Prof. Heath (Nomisma.org) suggested that the

current RDF/XML might be easier to read in Turtle. Therefore, we used the Turtle syntax in

some use cases, especially those that would have been too long in RDF/XML (in Appendix

1 we included both).

Feedback by Dr. Wigg-Wolf (Nomisma.org) on the Nomisma-Cookbook:

“aus Sicht der Numismatik kann ich eigentlich nur sagen, dass das Cookbook

genau das ist, was wir brauchen! Wie Prof. Andrew Meadows gesagt hat, wir

hätten vor Jahren damit anfangen sollen. Es ist leicht verständlich und

wird für viele, die mit der Ontologie arbeiten wollen aber sie noch nicht

kennen und verstehen, sehr hilfreich sein.

Wir werden nach und nach an den Beispielen für die einzelnen Einträgen

arbeiten müssen. Aber eine sehr gute Grundlage ist da. Danke!”

Modeling Structured Data Chapter 3
Modeling the Layers of a Hoard Vessel

 33

3.2 Modeling the Layers of a Hoard Vessel
A hoard is a collection of valuable items (e.g., coins), that were buried or lost in the antiquity

and have been found in the modern time. The items in a hoard vessel may have been placed

all at once or over time, they could also be ordered according to certain scales such as material

or value, to give examples. In any of these cases, there is the possibility of separating the

contents of the vessel into layers, while maintaining its sequence inside the vessel. With this

emerged the need for a solution to modeling such layers.

In this section we would like to suggest two approaches (solution 1 & 2) to modeling

these layers and their content. For this purpose, we will be referring to the coin finds as

'Hoards' as a general term used in the Nomisma-Ontology to represent a lost or deposited

numismatic object or group of numismatic objects. We will use the keyword 'item' to refer

to the individual content (coin, jewel, medallion, etc.) within these layers.

3.2.1 Solution 1: Using Nomisma-Properties for Sequencing the Units of Stratification
To describe the layers of hoard vessel we will be using three of the Nomisma.org properties

provided to describe the sequence of the units of stratification. These three properties are:

isAbove, isBottom and isEqual, and they are based on the Harris Matrix system for units of

archaeological stratification. We can use these properties to describe the layers of a hoard

vessel and thereby the individual items they contain. Figure 3. 12 below shows how to

represent the layers of a hoard in form of Harris matrix, and Figure 3. 13 illustrates the Harris

matrix of the individual items contained in each layer.

Modeling Structured Data Chapter 3
Modeling the Layers of a Hoard Vessel

 34

Figure 3. 12: Representing the layers of a hoard in form of Harris Matrix

The hoard in this example (Figure 3. 12) consists of four layers, where these layers can be

distinguished by the time interval the items were poured into the vessel (land deposit), by the

item’s material (savings hoard), or any other feature. And the triple representation of these

layers is with using the Nomisma properties isAbobe and isBelow as follows:

• Layer_1 nmo:isBelow Layer_2

• Layer_2 nmo:isAbove Layer_1 Layer_2 nmo:isBelow Layer_3

• Layer_3 nmo:isAbove Layer_2 Layer_3 nmo:isBelow Layer_4

• Layer_4 nmo:isAbove Layer_3

Supposing, layer 1 contains 1 item (1), layer 2 has 2 items (2 & 3), layer 3 contains 3

items (4, 5 & 6), and layer 4 has 1 item (7). The Harris matrix representation of these items

corresponds to that of the layers that contain them.

Modeling Structured Data Chapter 3
Modeling the Layers of a Hoard Vessel

 35

Figure 3. 13: Illustrates the Harris Matrix of the individual items contained in each layer

To represent this as RDF graph (Figure 3. 14), RDF/XML, Turtle respectively we will be

using the following properties:

• dcterms:tableOfContent for the full content of the hoard,

• crm:P167i_includes, for this table of content includes layers 1-7 (we will only

include 2 layers here for a better visibility), and

• each layer is of type nmo:StratigraphicUnit.

Figure 3. 14: RDF-Graph representation of hoard_x using the Nomisma properties isAbove and isBelow to
describe the different layers.

And in RDF/XML, and Turtle formats respectively:
<nmo:Hoard rdf:about="hoard_x">
 <crm:P167i_includes>
 <nmo:StratigraphicUnit rdf:about="layer_1">
 <dcterms:tableOfContents rdf:resource="http://../content_l1"/>
 <nmo:isBelow rdf:resource="layer_2"/>
 </nmo:StratigraphicUnit>
 </crm:P167i_includes>
 <crm:P167i_includes>
 <nmo:StratigraphicUnit rdf:about="layer_2">
 <dcterms:tableOfContents rdf:resource="http://../content_l2"/>
 <nmo:isAbove rdf:resource="layer_1"/>

Modeling Structured Data Chapter 3
Modeling the Layers of a Hoard Vessel

 36

 <nmo:isBelow rdf:resource="layer_3"/>
 </nmo:StratigraphicUnit>
 </crm:P167i_includes>
 …
</nmo:Hoard>

:hoard_1 a nmo:Hoard ;
 crm:P167i_includes :layer_1, :layer_2 , :layer_3 , :layer_4 .
 <http://example.org/layer_2> .

:layer_1 a nmo:StratigraphicUnit ;
 nmo:isBelow :layer_2 ;
 dcterms:tableOfContents <http://../content_l1> .

:layer_2 a nmo:StratigraphicUnit ;
 nmo:isAbove :layer_1 ;
 nmo:isBelow :layer_3 ;
 dcterms:tableOfContents <http://../content_l2> .
…

Figure 3. 15 shows the graph representation of modeling the individual items within the

layers using the inverse property of crm:P167i_includes. The RDF/XML and turtle syntaxes

of this model can be found below.

Figure 3. 15: RDF-Graph representation of layers 1-2, each with its items included using CIDOC-CRM inverse
property P167i_includes.

In RDF/XML and Turtle respectively:
<nmo:StratigraphicUnit rdf:about="layer_1">
 <dcterms:tableOfContents>
 <dcmitype:Collection>
 <rdfs:label>Content of layer 1 of Hoard_X</rdfs:label>

Modeling Structured Data Chapter 3
Modeling the Layers of a Hoard Vessel

 37

 <crm:P167i_includes rdf:resource="item_1"/>
 </dcmitype:Collection>
 </dcterms:tableOfContents>
 <nmo:isBelow rdf:resource="http://../layer_2"/>
</nmo:StratigraphicUnit>
<nmo:StratigraphicUnit rdf:about="layer_2">
 <dcterms:tableOfContents>
 <dcmitype:Collection>
 <rdfs:label>Content of layer 2 of Hoard_X</rdfs:label>
 <crm:P167i_includes rdf:resource="item_2"/>
 <crm:P167i_includes rdf:resource="item_3"/>
 </dcmitype:Collection>
 </dcterms:tableOfContents>
 <nmo:isAbove rdf:resource="http://../layer_1"/>
</nmo:StratigraphicUnit>

:layer_1 a nmo:StratigraphicUnit ;
 nmo:isBelow <http://../layer_2> ;
 dcterms:tableOfContents [a dcmit:Collection ;
 rdfs:label "Content of layer 1 of Hoard_X" ;
 crm:P167i_includes :item_1] .

:layer_2 a nmo:StratigraphicUnit ;
 nmo:isAbove <http://../layer_1> ;
 dcterms:tableOfContents [a dcmit:Collection ;
 rdfs:label "Content of layer 2 of Hoard_X" ;
 crm:P167i_includes :item_2,
 :item_3] .

Modeling each of these items can be made separately and be referenced here within the hoard

model. A full model for this solution can be found in Appendix 2.

3.2.2 Solution 2: Using RDF-Collection
RDF provides a pre-defined ‘Collection Vocabulary’ to describe a common group of

resources/items of certain members and in a given specific order. This vocabulary includes

four keywords: rdf:first, rdf:rest, rdf:List, and rdf:nil. Figure 3. 16 and Figure 3. 17 shows

the RDF graph of modeling a hoard’s content layers and the items within each layer

respectively, using RDF-Collection vocabulary, with the RDF/XML and Turtle syntaxes

below.

Modeling Structured Data Chapter 3
Modeling the Layers of a Hoard Vessel

 38

Figure 3. 16: Modeling layers of a hoards using RDF-Collection.

Figure 3. 17: RDF-Graph representation of layers 1-2, each with its items included using CIDOC-CRM inverse
property P167i_includes.

In RDF/XML and Turtle respectively:
<nmo:Hoard rdf:about="hoard_x">
 <dcterms:tableOfContents rdf:parseType="Collection">
 <dcmitype:Collection rdf:about="layer_1">
 <crm:P167i_includes rdf:parseType="Collection">
 <nmo:NumismaticObject rdf:about="item_1"/>
 </crm:P167i_includes>
 </dcmitype:Collection>
 <dcmitype:Collection rdf:about="layer_2">
 <crm:P167i_includes rdf:parseType="Collection">
 <nmo:NumismaticObject rdf:about="item_2"/>
 <nmo:NumismaticObject rdf:about="item_3"/>
 </crm:P167i_includes>
 </dcmitype:Collection>
 </dcterms:tableOfContents>
</nmo:Hoard>

:hoard_x a nmo:Hoard ;
 dcterms:tableOfContents (:layer_1 :layer_2) .

:item_1 a nmo:NumismaticObject .
:item_3 a nmo:NumismaticObject .
:item_4 a nmo:NumismaticObject .

:layer_1 a dcmit:Collection ;

Modeling Structured Data Chapter 3
Modeling the Layers of a Hoard Vessel

 39

 crm:P167i_includes (:item_1) .
:layer_2 a dcmit:Collection ;
 crm:P167i_includes (:item_2 :item_3) .

As it shows in the RDF/XML syntax, items must be modeled inside the hoard model and not

referenced (rdf:resource="item_i" is not allowed here, only rdf:about="item_i" is accepted).

For example:

<dcmitype:Collection rdf:about="layer_1">
 <crm:P167i_includes rdf:parseType="Collection">
 <nmo:NumismaticObject rdf:about="item_1">
 <nmo:hasMint rdf:resource="nm:comama"/>
 <nmo:hasWeight rdf:datatype="xsd:decimal">12.1</nmo:hasWeight>
 <foaf:depiction rdf:resource="https://.../image"/>
 </nmo:NumismaticObject>
 </crm:P167i_includes>
</dcmitype:Collection>

Also, the fact that each member of an RDF-Collection is connected via an empty node means

that this collection container is closed, because other RDF documents cannot access the blank

nodes (Yu, 2011). To maintain the same pattern with every entry RDF/XML provides a

notation, namely 'rdf:parseType' with value 'Collection', to describe a close container. This

eliminates the need to write the keywords rdf:first, rdf:rest, and rdf:nil manually (Yu, 2011),

as shown in the RDF/XML lines above.

3.3 Summary
In the first part of this chapter, we introduced the Nomisma.org, a domain specific ontology

of numismatic concepts, and gave some best practice suggestions of modeling examples,

following which promotes better interoperability. We created use cases for almost every term

in the Nomisma-Ontology and posted them within a wiki page under Nomisma-CookBook.

The second part of this chapter presents two approaches for modeling the layers of a

hoard vessel. One approach handles the layers as stratigraphic units – a Nomisma-class– and

uses the Nomisma-properties isAbove, isBelow and isEqual—based on Harris-Matrix – to

describe the position of each layer within the vessel. The other approach uses the RDF-

Modeling Structured Data Chapter 3
Modeling the Layers of a Hoard Vessel

 40

Collection, a closed container, within which the entries are organized by the order of

inclusion.

Information about coins as archaeological objects is complex and, in many cases,

involve uncertainty. But even uncertain information in this matter can be of great value, and

here emerges the need of a way to model this information and distinguish it from reliable

ones. The next chapter introduces eight approaches to modeling uncertainties in numismatic.

Modeling Uncertainties Chapter 4
Approaches for Modeling Uncertaint ies in Ancient Coins

 41

4. Modeling Uncertainties in Ancient Coins
A large number of ancient coins show strong signs of wear and corrosion for a variety of

reasons, e.g., accidentally damaged during their circulation period or eroded due to their state

of preservation. This detracts their informative features e.g., depiction, date or symbols

referring to the place of mint, making them unrecognizable even for experts. Identifying these

features can occur in many different degrees; certain if the feature clearly identifiable or

uncertain where the feature cannot be (clearly) identified; uncertain with one possibility,

uncertain with specific number of possibilities, uncertain with many possibilities or uncertain

with unlimited possibilities.

This chapter deals with investigating approaches for handling uncertainties in the

numismatic domain.

4.1 Approaches for Modelling of Uncertainties in Ancient Coins

There is still no uniform method for modeling uncertainties, some datasets been referring to

it as text in the property object or in the coin (title) description, and some been using

Nomisma predefined IDs for uncertainty, illustrated in Figure 4. 1. These modeling examples

may seem clear and simple, but things are easily misinterpreted when shared as open data.

For instance, if there are multiple value options for the Mint, including them in a text would

be unclear and may not be simple to query. Also, creating an object value (such as a nomisma

ID) for each possibility is inefficient. For simplicity, we will consider the following situation

in all modeling examples of this section:

• Coin_1 been a well preserved and can un-confusingly be identified, it was certainly

minted in Comama.

• Coin_2 poorly preserved, has unclear, uncertainly recognizable features, could be

minted in Comama but is uncertain.

Modeling Uncertainties Chapter 4
Approaches for Modeling Uncertaint ies in Ancient Coins

 42

Figure 4. 1: Coin_1 minted in “Comama” is certain, but for Coin_2 this is uncertain. (a) as text for the value
of property hasMint, (b) as text in the coin description, (c) un-specified Nomisma-id for uncertain features in
general and (d) using specified Nomisma-id for uncertain mint like; “Uncertain Mint 16” for uncertain
“Ptolemaic Mint 16 in Asia-Minor”. Nomisma.org provides a number of specified IDs for possible uncertain
features (concepts) (Laskey K. J., 2008).

And in RDF/XML:
(a)
<rdf:Description rdf:about="Coin_2">
 <nmo:hasMint>Coin_2, ncertain mint (Comama?)</nmo:hasMint>
</rdf:Description>

(b)
<rdf:Description rdf:about="Coin_2">
 <dcterms:description>Coin_2, ncertain mint (Comama?) </dcterms:description >
</rdf:Description>

(c)
<rdf:Description rdf:about="Coin_2">
 <nmo:hasMint rdf:resource=”nm:uncertain_value”/>
</rdf:Description>

(d)
<rdf:Description rdf:about="Coin_2">
 <nmo:hasMint rdf:resource=”nm:uncertain_16_pco”/>
 <dcterms:title>Coin_2, uncertain mint in Asia Minor</dcterms:title>
</rdf:Description>

Uncertainty modeling has long been an area of active research and a discussion topic in many

communities. A simple way to add uncertainty is to use RDF_Reification (statement about a

Modeling Uncertainties Chapter 4
Approaches for Modeling Uncertaint ies in Ancient Coins

 43

statement) to say that Coin_2 minted in comama is uncertain, shown in Figure 4. 2. However,

this would mean using five to six more triples (triple explosion).

Figure 4. 2: Using RDF-Reification to express that it is uncertain whether Coin_2 was minted in Comama, while for
Coin_1 is certain.

The following are approaches (solutions) for modeling uncertainties. The first two solutions

were presented in (Uncertainty Handling for Ancient Coinage., 2014), the next three

solutions (S3-S5) are our interpretation of the discussions by (Doerr M. e., 2014) in the

CIDOC CRM community. We also suggest three further approaches (S6-S8), two of which

(S6 and S7) based on S1 and S2 respectively. To explain the different approaches, we take

the situation of Coin_1 minted in Comama is certain, and for Coin_2 this is uncertain.

4.1.1 Solution 1: RDF-Reification-Based Approach by CIDOC CRM
An approach similar to RDF-Reification based on CIDOC CRM (Uncertainty Handling for

Ancient Coinage., 2014) (E13 Attribute Assignment) in conjunction with the Research

Spacers (RS) projects (BM Association Mapping) (Alexiev, Confluence, 2013), in Figure 4.

3.

Modeling Uncertainties Chapter 4
Approaches for Modeling Uncertaint ies in Ancient Coins

 44

Figure 4. 3: CDOC_CRM/ RS Uncertainty modeling similar to RDF_Reification. Coin_2 minted in Comama
is uncertain, while for Coin_1 it is certain.

As in the standard RDF-Reification, five additional triples are required to express the

uncertainty of one feature. Also, querying for coins with certain properties only, nm:comama

as certain mint in this example, is complex.

4.1.2 Solution 2: Adding a Resource Directly to the Property Path
A proposal by (Tolle & Wigg-Wolf, 2014) for modeling the uncertainty is given by adding

an additional resource directly to the property path.

Figure 4. 4: Expressing uncertainty for coin_2 minted in Comama

With this approach fewer triples are needed, and querying for certain features is simple. For

example, using SPARQL and giving the following query:

𝑆𝐸𝐿𝐸𝐶𝑇	? 𝑐𝑜𝑖𝑛	𝑊𝐻𝐸𝑅𝐸	{	? 𝑐𝑜𝑖𝑛	𝑛𝑚𝑜: ℎ𝑎𝑠𝑀𝑖𝑛𝑡	𝑛𝑚: 𝑐𝑜𝑚𝑎𝑚𝑎	}

The result will return the coin that is certain to be minted in "Comama", i.e., Coin_1. Though,

for Coin_2 a more complex query must be written. This is different to the approach of

Modeling Uncertainties Chapter 4
Approaches for Modeling Uncertaint ies in Ancient Coins

 45

CIDOC_CRM/ RS, where this query returns both Coin_1 and Coin_2. Whereas to retrieve

only the certain results (Coin_1) require a more complex query (Appendix 3). With this

approach of (Tolle & Wigg-Wolf, 2014) much less additional triples are required (two more

triples) and inferring information from uncertain data can be avoided, while them still in

reach if needed. However, it is not possible to fix the property’s ranges (Tolle & Wigg-Wolf,

2014). One potential option is to define, for example, a X_Property_Class as the scope of

(each) Nomisma-property, but this would mistakenly mean that the blank-node (with ID

eventually) to be derived as an instance of this scope class. With reification and the CIDOC

CRM/RS approach such instantiation can be done easily. Although, strict definitions of

properties’ domains and ranges may prevent them from being reused.

4.1.3 Solution 3: Assigning Reliability Instead of Uncertainty
Solutions 3-5 are proposed in the “45th joint meeting of the CIDOC CRM SIG and Issue

349: Belief Values” (45th joint meeting, 2009, S. 2) (Doerr M. e., 2014), to handle

uncertainty. It was not easy translating these into graphs and then into RDF/XML. Therefore,

we contacted Dr. Doerr (FOURTH Greece, Chair, CIDOC-CRM Special Interest Group) to

ask for his opinion of our interpretation of solutions (S3-S5). We will include his opinion on

each of the solutions after reviewing them.

This solution 3, by (Niccolucci, 2016), proposes the following; instead of assigning

uncertainty is to assign reliability as subclass of E16 Measurement, that measures a

dimension, and assert a numerical value as E60 number for the reliability through P90 has

value. The activity of assessing the reliability of a statement is treated as E13 Attribute

Assignment. The result of the measurement (reliability) can also be a function or an ordinal

value. We tried to translate this into RDF/XML, the result is illustrated in Figure 4. 5 and

Figure 4. 6.

Modeling Uncertainties Chapter 4
Approaches for Modeling Uncertaint ies in Ancient Coins

 46

Figure 4. 5: Solution 3; assigning reliability instead of uncertainty and passing a reliability value through
P90_has value. Treating the reliability assessment as E13_ Attribute Assignment.

E16 Measurement has properties: P39 measured and P40 observed dimension: E54

Dimension, which has property P90 has value. So, we defined R1, R2, T1 and T2 as follows:

• R1_Reliability_Assessment: subClass of E16_Measurment

• R2_Reliability: subClass of E54_Dimension

• T1_assessed_the_reliability_of: subProperty of P40_ observed_dimension

• T2_assessed_as_reliability: subProperty of P39_measured

We thought of the blank-node-A as the wrapper for all blank-nodes-b that is meant to assess

the reliability of the statement it delivers. For instance, the blank-node-b1 refers to the

following: the statement “Coin_2 minted in Comama” has a reliability of “0.92”. If we want

to add a new reliability value: “Coin_2 minted in Cretopolis” with reliability of “0.08”,

“Coin_2 shows a portrait of Titus” or a statement about another coin e.g., “Coin_3 minted

in Comama” (comama or some other place) that also have some reliability value, we will

deliver any of those statements using a blank-node (e.g., b2) and assign the reliability of it

within A as illustrated in Figure 4. 7.

Figure 4. 6: Solution 3; asserting the reliability of multiple statements of different coins.

A
b1 c1

A b1

b2

c1

c2

Modeling Uncertainties Chapter 4
Approaches for Modeling Uncertaint ies in Ancient Coins

 47

Figure 4. 7: Solution 3; asserting the reliability of two statements about the Coin_2 minted in Comama with
reliability 0.92, or minted in Cretopolis with reliability 0.08, and another statement of a different coin; Coin_3
minted in Comama with reliability 0.85.

Dr. Doerr means that he would not use this approach because it is not really a Measurement.

Instead, he would create a new property for E13 “confidence value”. Translating this into an

RDF graph, we came out with the following model:

Figure 4. 8: Solution suggesting creating a new property of E13 ‘confidence value’, instead of the idea proposed
in solution 3, which is R1_Reliability_Assessment as sub-class of E16_Measurment.

With T3 restricted to domain E13:

<rdf:Property rdf:about="T3_assign_confidence_level">

c1

c2

c3

A

b1

b2

b3

Modeling Uncertainties Chapter 4
Approaches for Modeling Uncertaint ies in Ancient Coins

 48

 <rdfs:domain rdf:resource="crm:E13_Attribute_Assignment"/>
</rdf:Property>

If we translated Dr. Doerr’s suggestion correctly, we could see that this solution is very close

to solution 1.

4.1.4 Solution 4: Using CRMinf and Assigning Belief Values
This solution is also proposed by (Niccolucci, 2016) and in (45th joint meeting, 2009, S. 2),

the idea is to use properties/classes from CRMinf, namely J4_that and J5_holds_to_be

together with I4_Proposition_set to assign belief values (I6) to statements obtained through

observations. As a first interpretation of this idea, we got the following model Figure 4. 9

based on RDF-Reification:

Figure 4. 9: Solution 4; using properties/classes from CRMinf to add uncertainty, based on RDF-Reification.

We tried a different way (Figure 4. 10) by using the same approach as in solution 2, for it

requires less additional triples than solution 1, respective RDF-Reification.

Figure 4. 10: Solution 4; using properties/classes from CRMinf to add uncertainty, based on Solution 1.

If there is more than one option for the value a property can have belief proposition “Coin_2

minted in comama, is uncertain, but it been minted in cretopolis, is more likely”. We suggest

using (I5 Inference Making), illustrated in Figure 4. 11, along with (J2 concluded that) to

add the belief that “Coin_2 minted in cretopolis, is more likely” as another proposition:

Modeling Uncertainties Chapter 4
Approaches for Modeling Uncertaint ies in Ancient Coins

 49

Figure 4. 11: Solution 4; using I5 Inference Making from CRMinf to add multiple beliefs about Coin_2 minted
either in comama, uncertain, or in cretopolis, more likely.

Dr. Doerr’s opinion about using CRMinf was that it is good when one has supporting

arguments, but it works with Named Graphs.

4.1.5 Solution 5: Extending CRM with Properties of Properties
This solution, proposed in (45th joint meeting, 2009) by Dr. Doerr (Doerr M. e., 2014),

suggests expanding CRM properties with the "Property Class" PC and adding a "certainty

value" as a ".2" property (properties of properties). As we understood, .2 properties can only

be assigned to the CRM properties that already have a .1 property (listed in Table A4. 1 in

Appendix 4). So, we tried to create .2 properties, listed in Table A4. 2 in Appendix 4, to

use with all the currently existed Nomisma properties. Translating this solution into

RDF/XML we decided to base on the approach of solution 2, by adding an additional

resource directly in the property path Figure 4. 12, as it requires less additional triples. We

also used “amt:weight” from the “Academic Meta Tool Vocabulary” (Thiery F. U., 2018),

which represents a degree of vagueness and takes a value between [0;1].

Figure 4. 12: Solution 5; creating CRM .2 properties to express uncertainty in every possible aspect, using
amt:weight to represent the degree of vagueness/uncertainty.

Modeling Uncertainties Chapter 4
Approaches for Modeling Uncertaint ies in Ancient Coins

 50

RDF does not support properties of properties, (Doerr M. L., 2020, S. 12-13) suggests two

workarounds; a) defining the .2 properties locally, for they all have range “E55 Type”, so

they "correspond to subtyping of the respective property by a local vocabulary" (Doerr M.

L., 2020, S. 12-13). b) using "property class PC" and defining the .2 properties as open

vocabulary. At first, we resorted to solution a) and defined our customed .2 properties locally

as described in (Doerr M. L., 2020), for more freedom, we decided not to specify a range.

Eexample for uncertain mint:

<rdf:Property rdf:about="P189_uncertain_place">
 <rdfs:domain rdf:resource="E1_CRM_Entity"/>
 <rdfs:subPropertyOf rdf:resource="P189_ approximates"/>
</rdf:Property>

Dr. Doerr’s opinion on this solution was that we should use the "PC" property class model

(FORTH-ICS, 2014) and reinterpret to our properties. And that "this model replaces each

property by an RDF-Class". So, we added our .2 properties to the model as shown in this

example:

<rdf:Property rdf:about="P189.2_uncertain_place">
 <rdfs:domain rdf:resource="PC189_approximates"/>
 <rdfs:range rdf:resource="E55_Type"/>
</rdf:Property>

Dr. Doerr advised not to use CRM properties with Nomisma, unless we map Nomisma to

CRM:

 “A first thought is that mixing CRM with the nomisma ontology is problematic. The latter is

not CRM compatible, because it shortcuts the events in the history of the coin, as I

understand. Anyway, Attribute Assignment, is neutral to the property it assesses, as well as

CRMinf.”

He also recommended:

„If you have not too many weights, you can instead subtype your properties with

"has_mint_very_likely", "has_mint_likely", "has_mint_unlikely" etc. This is what I normally

recommend instead of properties of properties. It is more efficient for querying.

"has_mint_very_likely", "has_mint_unlikely" may even be subproperties of

"has_mint_likely", depending on the logic you would apply.“

Modeling Uncertainties Chapter 4
Approaches for Modeling Uncertaint ies in Ancient Coins

 51

But if we want to create such subproperties for every Nomisma property that can have

uncertainty would lead to property-explosion and may not be very flexible (Thiery F. N.-W.,

2021). Still, this suggestion can be applicable with creating Nomisma-IDs for such different

degrees of likelihood that can be used with, for example, bmo:PX_likelihood instead of

amt:weight. This also applies to the next suggestion of using "multi-valued logic".

Dr. Doerr discourages using real number uncertainty weights, as in solutions 3 and 5, for they

lack empirical basis. Instead, he recommended using "multi-valued logic"; True, Very-

Likely, Likely, Unlikely, False, etc., and that more than three or five degrees of uncertainty

will hardly be used by researchers. This was also reported by (Tolle & Wigg-Wolf, 2014),

experts would not like to weight the likelihood/uncertainty for each property. Also, if

different experts entered these weights, then they would need to be adjusted accordingly as

experts can grade coins differently and therefore those weights will not be very comparable.

4.2 Further Approaches for Modeling Uncertainty
Solutions 6-8 are our own attempt for modeling uncertainty. Solutions 6 and 7 are based on

the use of UncertainStatement/ApproximateStament, classes of the Extended Date/Time

Format (EDTF) Ontology (Congress, 2022) (Shaw, 2021), which are also sub-classes of

Qualified statement a sub-class of rdf:Statement Figure 4. 13. Solution 8 is a new approach

using un:hasUncertainty as a property of the item that has uncertainty.

Figure 4. 13: edtfo:QualifiedStatement a sub-class of rdf:Statement, edtfo:UncertainStatement and
edtfo:ApproximateStament subclasses of edtfo:QualifiedStatement.

Modeling Uncertainties Chapter 4
Approaches for Modeling Uncertaint ies in Ancient Coins

 52

4.2.1 Solution 6: RDF-Reification with Extended Date/Time Format Ontology
(EDTFO)

The Extended Date/Time Format (EDTF), created by the Library of Congress with the

participation of communities with related interests (Congress, 2022), defines features to be

supported in a date/time string. And the EDTF concepts, by (Shaw, 2021), a draft ontology

for expressing EDTF constructs using the Time Ontology in OWL, with the namespace prefix

‘edtfo’.

 For this solution we will be using RDF-Reification with an EDTFO-Class

‘UncertainStatement’, “a statement the source of which is considered dubious” (Shaw, 2021).

With this example (Figure 4. 14) we describe the statement ‘Coin_2 minted in Comama’ as

an uncertain statement.

Figure 4. 14: RDF-Reification with edtfo:UncertainStatement.

In RDF/XML and turtle respectively:
<rdf:Description rdf:about="Coin_1">
 <nmo:hasMint rdf:resource="nm:comama"/>
</rdf:Description>

<rdf:Description rdf:about="Coin_2">
 <nmo:hasMint rdf:resource="nm:comama"/>
</rdf:Description>
<edtfo:UncertainStatement rdf:about="statement_c2">
 <rdf:subject rdf:resource="Coin_2"/>
 <rdf:predicate rdf:resource="nmo:hasMint"/>
 <rdf:object rdf:resource="nm:comama"/>
</edtfo:UncertainStatement>

:Coin_1 nmo:hasMint nm:comama .

Modeling Uncertainties Chapter 4
Approaches for Modeling Uncertaint ies in Ancient Coins

 53

:Coin_2 nmo:hasMint nm:comama .
:statement_c2 a edtfo:UncertainStatement ;
 rdf:object nm:comama ;
 rdf:predicate nmo:hasMint ;
 rdf:subject :Coin_2 .

4.2.2 Solution 7: Based on Solution 2 and Extended Date/Time Format Ontology
(EDTFO)
This solution is based on solution 2, by Dr. Tolle and Dr. Wigg-Wolf. Instead of adding the

property un:hasUncertainty with value nm:uncertain_value, we used

edtfo:ApproximateStament Figure 4. 15 (edtfo:UncertainStatement is also an option). The

ApproximateStatement is a statement that is possibly correct, or close to being correct.

 It requires 4-triples to model the following example:1-triple for Coin_1

hasMint=comama (certain), and 3-triples for Coin_2 hasMint=comama (uncertain but

possibly correct). Whereas solution 6 use 6 triples for the same example.

Figure 4. 15: Using EDTFO: ApproximateStatement, added directly in the property path, based on solution 2.

In RDF/XML and turtle respectively:
<rdf:Description rdf:about="Coin_1">
 <nmo:hasMint rdf:resource="nm:comama"/>
</rdf:Description>
<rdf:Description rdf:about="Coin_2">
 <nmo:hasMint>
 <edtfo:ApproximateStatement>
 <rdf:value rdf:resource="nm:comama"/>
 </edtfo:ApproximateStatement>
 </nmo:hasMint>
</rdf:Description>

:Coin_1 nmo:hasMint <nm:comama> .
:Coin_2 nmo:hasMint [a edtfo:ApproximateStatement ;

Modeling Uncertainties Chapter 4
Approaches for Modeling Uncertaint ies in Ancient Coins

 54

 rdf:value <nm:comama>] .

4.2.3 Solution 8: A New Approach Based on Using un:hasUncertainty
This new approach is based on using un:hasUncertainty as a property of a coin that has

uncertainty in one or multiple features. It requires 2 tiples to express one uncertain property.

We provided 3 options for this solution: simple with one uncertain property Figure 4. 16,

complex with 2 certain- and 3 uncertain properties Figure 4. 17, and a more complicated one

with 2 certain- 4 uncertain properties most of which with extra features Figure 4. 18.

Figure 4. 16: A simple version of S8, Coin_2 has uncertainty which is the pace of mint being Comama.

In RDF/XML syntax:

<rdf:Description rdf:about="Coin_1">
 <nmo:hasMint rdf:resource="nm:comama"/>
</rdf:Description>
<rdf:Description rdf:about="Coin_2">
 <un:hasUncertainty>
 <rdf:Description>
 <nmo:hasMint rdf:resource="nm:comama"/>
 </rdf:Description>
 </un:hasUncertainty>
</rdf:Description>

This is the simplest case of Coin_2 having just one uncertain feature which is the place of

mint. Note, that Coin_2 having certain features is decarded here but mentioned in the next

two examples.

Figure 4. 17: A slight complex version of S8, Coin_2 has 2 certain and 3 uncertain features.

Modeling Uncertainties Chapter 4
Approaches for Modeling Uncertaint ies in Ancient Coins

 55

In Turtle syntax:
:Coin_2 nmo:hasAxis "2.0"^^<xsd:decimal> ;
 nmo:hasWeight "17.2"^^<xsd:decimal> ;
 un:hasUncertainty [nmo:hasDenomination nm:large_ae2 ;
 nmo:hasDie <http://.../Die_4> ;
 nmo:hasMint nm:comama] .

We omitted Coin_1 as is modelled the same in all solutions. This model has 6 triples in total,

2 for 2 certain properties, and 4 for 3 uncertain properties.

 A more coplicated model we created that has 16 triples in total, with 2 certain

properties and 4 uncertain properties, most of which with features:

• It is uncertain if Coin_2 was produced using Die_2 (the URI to Die_4 is provided).

It is uncertain if Die_4 was in use during the time (170-162 B.C.).

• It is uncertain which of these three is the issuer of Coin_2: issuer_A, issuer_B, or

issuer_C.

Figure 4. 18: A more complex version of S8, Coin_2 has 2 certain and 4 uncertain properties, most of which
with more additional features.

In RDF/XML and turtle syntaxes respectively:

1. <rdf:Description rdf:about="Coin_2">
2. <nmo:hasWeight rdf:datatype="xsd:decimal">17.2</nmo:hasWeight>
3. <nmo:hasCorrosion rdf:resource="nm:heavily_corroded"/>
4. <un:hasUncertainty>
5. <rdf:Description>
6. <nmo:hasMint>
7. <rdf:Description>
8. <rdf:value rdf:resource="nm:comama"/>
9. <crm:P89_falls_within rdf:resource="nm:asia_minor"/>

Modeling Uncertainties Chapter 4
Approaches for Modeling Uncertaint ies in Ancient Coins

 56

10. </rdf:Description>
11. </nmo:hasMint>
12. <nmo:hasDenomination rdf:resource="nm:large_ae2"/>
13. <nmo:hasDie>
14. <rdf:Description>
15. <rdf:value rdf:resource="http://.../Die_2"/>
16. <nmo:hasCorrosion rdf:resource="nm:extremely_corroded"/>
17. <un:hasUncertainty>
18. <rdf:Description>
19. <nmo:hasDate>170-162 B.C.</nmo:hasDate>
20. </rdf:Description>
22. </un:hasUncertainty>
23. </rdf:Description>
24. </nmo:hasDie>
25. <nmo:hasIssuer>
26. <rdf:Description>
27. <rdf:value rdf:resource="http://.../issuer_A"/>
28. <rdf:value rdf:resource="http://.../issuer_B"/>
29. <rdf:value rdf:resource="http://.../issuer_C"/>
30. </rdf:Description>
31. </nmo:hasIssuer>
32. </rdf:Description>
33. </un:hasUncertainty>
34. </rdf:Description>

:Coin_2 nmo:hasCorrosion nm:heavily_corroded ;
 nmo:hasWeight "17.2"^^<xsd:decimal> ;
 un:hasUncertainty [nmo:hasDenomination nm:large_ae2 ;
 nmo:hasDie [nmo:hasCorrosion <nm:extremely_corroded> ;
 un:hasUncertainty [nmo:hasDate "170-162 B.C."] ;
 rdf:value <http://.../Die_2>] ;
 nmo:hasIssuer [rdf:value <http://.../issuer_A>,
 <http://.../issuer_B>,
 <http://.../issuer_C>] ;
 nmo:hasMint [crm:P89_falls_within nm:asia_minor ;
 rdf:value <nm:comama>]] .

Modeling Uncertainties Chapter 4
RDF-Star

 57

4.3 RDF-Star
RDF-star is an extension of the conceptual data model and concrete syntaxes of RDF. It

provides an alternative to standard RDF reification by allowing the creation of short triples

(referred to as RDF star triples) that contain other triples in their subject and/or object position

(Arndt, et al., 2022). There is no RDF/XML extension supporting RDF-Star yet, but there is

one for Turtle, and other serialization syntaxes like N-Triples, N-Quads, TriG and a query

language SPARQL-Star. In this section we will only be using Turtle-Star to propose a

solution for modeling uncertainty.

With RDF-Star, a triple can be used as an asserted triple, a quoted triple, or both. An

asserted triple is what we been using throughout this work, a tuple of three components:

subject, predicate, and object. A quoted triple is a tuple that can have another quoted triple

as its subject or object component. Example of both triple types in Turtle-Star:

- asserted triple: Coin_1 nmo:hasMint nm:comama.

- quoted triple: <<:Coin_1 nmo:hasMint nm:comama>> a rdf:Statement

To represent an uncertain statement like ‘Coin_2 minted in Comama, is uncertain’ in Turtle-

Star we can use quoted-triples as follows:
<<:Coin_2 nmo:hasMint nm:comama>> un:hasUncertainty nm:uncertain_value .

The triple that holds the statement ‘Coin_2 minted in comama’ is in the subject position of

the triple that completes with ‘has uncertainty, uncertain value’. Figure 4. 19 shows the graph

representation of this example:

Figure 4. 19: Turtle-Star in graph representation.

Modeling Uncertainties Chapter 4
RDF-Star

 58

In comparison to the Turtle-format and graph representation of RDF-Reification and of

solution 2, both for the same example, shows the renunciation of using empty nodes with

RDF-Star:

RDF-Reification:

:Coin_2 nmo:hasMint nm:comama .

[] a rdf:Statement ;
 un:hasUncertainty nm:uncertain_value ;
 rdf:object nm:comama ;
 rdf:predicate nmo:hasMint ;
 rdf:subject :Coin_2 .

Figure 4. 20: Graph representation of RDF Reification.

Solution 2:

:Coin_2 nmo:hasMint [un:hasUncertainty nm:uncertain_value ;
 rdf:value nm:comama] .

Figure 4. 21: Graph representation of Solution 2.

To give one more example of Coin_2 showing a portrait of ‘Titus’ is certain, but it is

uncertain if this coin minted in ‘Comama’:
:Coin_2 nmo:hasPortraie nm:titus.

Modeling Uncertainties Chapter 4
RDF-Star

 59

<< :Coin_2 nmo:hasMint nm:comama>> a edtfo:UncertainStatement .

Figure 4. 22: Using asserted triple for certain features, and quoted triple to refer to a statement being uncertain.

Modeling Uncertainties Chapter 4
Summary

 60

4.4 Summary
Information about coins as archaeological objects is complex and, in many cases, involve

uncertainty. But even uncertain information in this matter can be of great value, and here

emerges the need of a way to model this information and distinguish it from reliable ones. In

this chapter we introduced eight approaches to modeling uncertainty in the field of

numismatics. The first two approaches (S1 and S2) were given as RDF graphs, so we had no

difficulty in writing them in RDF/XML format. The next three solutions (S3-S5) were

discussions suggesting using this property and that class. It was not easy translating these

into graphs and into RDF/XML. We contacted Dr. Doerr (FOURTH Greece, Chair, CIDOC-

CRM Special Interest Group) to ask for his opinion of our interpretation of solutions (S3-

S5), which we brought up while presenting the solutions.

 We believe that RDF-Star can offer a good and compact solution to modeling

uncertainties. It offers the possibility to express uncertainty with much less triples compared

to RDF-Reification and with the dispense of using blank-nodes. Since there exists not an

RDF/XML extension that supports RDF-Star, we must end our short journey with it at this

point.

In order to test these eight solutions on large datasets with 100K- to 1M-coins, we

created an application that automatically generates an RDF/XML file from a given

Excel/CSV file and a selected one of the eight solutions, which we implemented within the

application. The solutions will then be tested for query -runtime and -memory-consumption

in retrieving certain and uncertain data. The next chapter handles creating the application

explaining its most important components for automating the generation of the RDF/XML

file based on the solutions for uncertainty discussed in this chapter.

The Excel/CSV file contains the coins as subjects, each with property, property value and a

field indicating whether the property is uncertain.

Implementation of the Uncertainty Solutions Chapter 5
Requirements and Environment Preparat ion

 61

5. Implementation of the Uncertainty Solutions as Web
Application
In the former chapter we presented eight modeling solutions for dealing with uncertainties in

determining features of ancient coins. To explain these solutions, we used an example of two

coins, one of which minted in Comama is certain and for the other this is uncertain. Such

example with only two entries can easily be written manually, yet it is far away from reality

where thousands (or maybe hundreds of thousands) of coins are dealt with that may contain

uncertainties. Therefore, we decided to create a program that generates an RDF/XML file

from the input data (in Excel/CSV) according to one of the eight proposed solutions.

 As first approach, we created a CSV-file of 500-coins with few Nomisam-properties

and fake randomly generated property-values, in Figure 5. 1. For the uncertainty we created

a separate array that includes an uncertainty-level 𝑖, 𝑓𝑜𝑟	[0 < 𝑖 ≤ 1] to 50% of the property-

values of few properties. We then implemented one solution statically depending on our

example.

Figure 5. 1: The generated CSV-file of 500-coins with few properties and random property-values, first
approach.

At this point we had no knowledge of the method used by experts to document such data of

coins in tables, nor of how to express uncertainty in a particular property. After we inquired

about the method used, we changed the CSV-file accordingly and modified the

implementation of the solutions to be dynamic.

Implementation of the Uncertainty Solutions Chapter 5
Requirements and Environment Preparat ion

 62

In this chapter we introduce SAUN, the web application created to convert the input

CSV/or Excel file of coins to an RDF/XML file, based on the eight uncertainty modeling

solutions. We will explain the purpose for the used technologies, the form of the input file,

the dynamic implementation of the solutions (based on an example), and the steps for

generating the output RDF/XML file.

5.1 Requirements
SAUN stands for ‘Serialization Application for Uncertainty in Numismatics’. It is based on

the Model View Controller (MVC) architecture with a graphical user interface that receives

an ‘excel’ or a ‘csv’ file and generates, based on a selected solution of modeling uncertainties,

an RDF/XML file —later also included the Turtle format — that is compatible to the W3C

standards, illustrated in Figure 5. 2. With the help of the Graphviz tool, SAUN can also

visualize the RDF/XML output file as RDF graph. It has a Fuseki server embedded with

extended memory for an automatic data transfer and queries running.

Figure 5. 2: A basic illustration of the main goal of SAUN, from an input of excel/csv data, generate an output
of RDF/XML file based on the uncertainty modeling approaches.

Implementation of the Uncertainty Solutions Chapter 5
Requirements and Environment Preparat ion

 63

5.1.1 MVC Architecture
For the implementation of SAUN, we used the MVC

architecture. The Model layer should have all the functional

component and the data of the application, and it must have no

connection to the View layer. In our implementation the Model

layer is equivalent to the python classes and database. We only

used HTML pages, and the View layer is for displaying the

components of those pages. The pages are separated in the template directory, and the Python

classes are responsible for processing the data.

The controller takes the role of controlling the communication between the View and

the Model. In our implementation we created a class app.py, which is the only class that uses

the flask libraries, and any data transportation (between Model and View) must be within this

class. The user has no direct access to the model and data transferring is only possible through

the controller using the methods GET and POST.

5.1.2 Input-File
After we informed about the form of the input file, how the properties are included and the

uncertainties are expressed, we created a simple Excel file of two coins as shown in Figure

5. 3 below. The headers include the full URI of the properties, each property could have a

second column referring to the uncertainty in this particular property, which contains of the

property name with the expression ‘hasUncertainty’ separated by an asterisk.

Figure 5. 3: The generated Excel-file of 2-coins with one property and a column for representing the uncertainty
in that property for each coin, second approach.

The header in the uncertainty must be unique to each property, which is the reason for using

the property name here. The asterisk serves the same purpose and for easier identification

Implementation of the Uncertainty Solutions Chapter 5
Requirements and Environment Preparat ion

 64

when reading and separating the headers. The ‘1’ under ‘hasMint*hasUncertainty’ is an

indicator for being the property ‘hasMint’ with the property-value

‘http://nomisma.org/is/comama’—or as we used to refer to it with short form

‘nm:comama’—is uncertain for ‘Coin_2’. For ‘Coin_1’ this is certain because the field

opposite is empty. We then replaced the ‘1’ in the uncertainty column with a random number

𝑖, 𝑤ℎ𝑒𝑟𝑒	[0 < 𝑖 ≤ 1], to be the uncertainty/confidence level, used e.g., in solution 4.

5.1.3 Technologies Used
The following technologies are used in creating and running SAUN.

Python, PyCharm and Java-14
SAUN is running on python 3.10, which can be downloaded from python.org. However, it is

also runnable on python 3.6 or higher. After running the installation, it is important to add

python path in the Environment variable. We used Python because it has many useful

libraries and good documentation. It is simple to work with and code changes can be easily

made.

 After we successfully installed Python, we need to write our code in an optimal

environment. There are many to consider, we recommend using Visual Studio Code or

PyCharm.

 To be able to run the Fuseki server we need to install java. The server requires Java

14.02, which can be downloaded from oracle.com under Java SE 14 Archive-Java SE

Development Kit 14.0.2 Windows x64 Installer. After running the installation, we need to

check with the cmd command java –version, that java 14.0.2 is in the system, because a

different version of Java may cause issues. In case Java is not recognized, we ensure it is

added to the environment variables path.

 Next is to install the latest version of the following libraries: Flask, JSON, os,

time, csv, pandas, rdflib, and NumPy. But before that, we run the command pip

install --upgrade pip. In case of a permission error, we add the keyword --user at

the end. This will allow the command to run the installation and avoid the user permission.

During the code implementation, we wanted to use a tool to easily connect the code to the

Implementation of the Uncertainty Solutions Chapter 5
Requirements and Environment Preparat ion

 65

UI. Flask offers a very easy way to create a web application and has very good documentation

that describes everything we need for our implementation.

Now that all libraries for the program are installed, we ensure that everything is

working correctly by running the class app.py. The Flask server should be started on the

internal address 127.0.0.1:5000. When clicking on the address SAUN’s index-page should

appear.

Apache Jena Fuseki Server

In our implementation, we appended the Fuseki server to the project file, to be able to upload

data and run queries automatically.

Further requirements

To use SAUN, and for further development the following requirements are a necessity:

1. Installing Python 3.10 or 3.9

2. MySQL, MySQL Workbench.

3. Windows Machine with:

a. CPU (intel core i3 – i9) up 2016 or AMD Ryzen 3 (G).

b. 16GB Ram 2400mhz or higher

c. SSD 128 or higher

4. Java Version 14.02

5. Fuseki Server

6. Graphviz

Implementation of the Uncertainty Solutions Chapter 5
Deploying SAUN

 66

5.2 Deploying SAUN
In this section we describe the process of preparing the input data, implementing the solutions

within SAUN and generating the output file.

5.2.1 Preparing the Input data
Preparing the data occurs within the class ‘readAndSeparate’. First is to read the data file,

which is either an Excel- or a CSV- file. Any other file type will lead to an error, and a reload

of the HTML-index page. Reading the data file can be done in many ways, for an easier

approach, we use csv-library for reading the csv-files and pandas for reading the Excel-files

and writing both CSV- and Excel-files. The inner classes and functions only work with CSV-

format, therefore, after selecting the input data file and the modeling solution to be generated,

the format of the input will be checked. If the input file is in Excel-format, it will be converted

to CSV and rewritten with the same name in the csv directory.

 Next step is to read the headers within the CSV-file and separate the ones that contain

the actual properties from the uncertain headers, which contain the

propertyName*hasUncertainty. Each group will then be stored with their data in a separate

file, as illustrated in Figure 5. 4 below.

Figure 5. 4: Separating the input data into two groups, one contains the actual properties/property-values, and
the other contains the columns with the headers with propertyName*hasUncertainty.

Note, that the uncertainty headers must contain the symbol ‘*’ with the property name, e.g.,

‘*hasMint’ or uncertain*hasMint. In case of a misspelling or the name of the uncertain header

Implementation of the Uncertainty Solutions Chapter 5
Deploying SAUN

 67

dose not match the actual name of the property, for example: the uncertainty header is

‘hasProductionPlace*hasUncertainty’ and the actual property name is ‘hasMint’, or

‘hasClosingDate*hasUncertainty’, while the actual property name is ‘hasEndDate’. In this

case, the property will be falsely interpreted as certain.

This process of separating the input data is executed one time for each uploaded data

file, no matter how many solutions the user decides to generate. This outcomes in reducing

the total runtime of the generation process of further solutions.

5.2.2 Implementing the Uncertainty Modeling Solutions
First thing is to define the namespaces being used in the solutions. We found no other choice

here but to statically code this process. What happens here is that the application identifies

each class/property used in creating a solution through its URI. It inspects the URI for

specific keywords. For instance, to identify that the Nomisma-Ontology was used it looks for

the keywords 'nomisma' and 'ontology' and use the letters ‘nmo’ as prefix. It will then store

the URI within an array containing of the: Namespace-name, Namespace-prefix, and the

property-/class-name. In case, for example, the use of the Nomisma-ontology was

determined, the array will contain the following:
['http://nomisma.org/ontology#', nmo, 'property-name']

We only define a namespace needed for a specific solution in the code section of that solution.

After defining the namespace, we append them to the RDF-Graph of the solution. When

retrieving the selected solution, we loop the input data that has been separated into two tables

data table and uncertainty table. First, we loop every subject i of n, which always has index

0, and every subject has a row where its property values are stored, and we need to iterate

each of these values in a row. So, we defined a second for-loop and set its range to the length

of the columns m.

Subjects hasProperty_1 hasProperty_2 hasProperty_3 … hasProperty_m

subject_1 property_value property_value property_value . property_value

subject _2

subject _n property_value property_value property_value . property_value

Implementation of the Uncertainty Solutions Chapter 5
Deploying SAUN

 68

For each inner iteration:

1. Check if a property value in the subject(row) is non or equal empty string. If so, means

that the subject in this column do not have any value. We continue the loop without adding

anything to the graph.

2. The Program will check the value of the respective cell in the uncertain array, if it is set to

0, means that the input value of the data is certain. Otherwise, it is uncertain.

In either way, whether certain or uncertain, three cases must be considered in order to attach

the entry (subject, predicate, object) to the graph in the correct way:

Case 1: If the cell includes the substring http or https and not XMLSchema then the entry

must be added as a URI-Reference to the graph. The property value that contains an

XMLSchema will be skipped here, because it represents a datatype and not part of the actual

property value.

Subjects http://nomisma.org/ontology#hasMint http://nomisma.org/ontology#hasWidth

subject_1 http://nomisma.org/id/comama 12.3^^ http://www.w3.org/2001/XMLSchema#decimal

Case 2: if the cell includes the substring XMLSchema means it includes a property value

with its datatype and it should be included as a literal not as URIRef.

The difference here to Case 1, is when the property-value was a literal (string, numeric or

date), with datatype (e.g., 2.3^^http://www.w3.org/2000/01/rdf-

schema#decimal). In this case, we return a list with first element "property value" and

second element "datatype" as follows:
[2.3, 'http://www.w3.org/2000/01/rdf-schema#decimal']

Case 3: If the cell does not contain a URI or a specific data type (plain text, number, date

with characters), it is inserted as a literal.

The above three cases were to build the graph with the certain entries (where the position in

the uncertainty table contains 'nan'). To add the uncertain entries (those with position in the

uncertainty table is not empty), we still need these three cases but with some modifications,

which is, acording to solution 2, using blank-node (BNode) directly in the property path. This

Implementation of the Uncertainty Solutions Chapter 5
Deploying SAUN

 69

means, that the blank-node will be in the object position (subject-property-BNode) in line 1,

then in the subject position in lines 2 & 3 where it has the property 'hasUncertainty' with

property value 'uncertain_value' in line 2. And the property 'value' with property-

value retrieved from the data array.

Case 1_Uncertain Entries:
1. G.add((URIRef(con[0]), eval(n_node[inncon]), BNode('b' +
 str(nodeCounter))))
2. G.add((BNode('b' + str(nodeCounter)), UN['hasUncertainty'],
 NM['uncertain_value']))
3. G.add((BNode('b' + str(nodeCounter)), RDF['value'],
 URIRef(con[inncon])))
4. nodeCounter += 1

To make each blank-node unique, we define a counter and initialize it with 0 (nodeCounter

in line 4). Then we append the counter value as string to the blank-node's name 'b'. This

returns us 'b0' for the first uncertain triple, 'b1' for the second and so on untel the last

uncertain triple is added.

Cases 2 and 3: Aplaying same proceger as in Case 1_Uncertain Entries (lines 1, 2 & 4). In

Case 2 line 3, we must replace the URIRef() in the object position with Literal() and

use the result of the function valueLinkSeperator(). And in Case 3 line 3, we just add

the value of the cell as it is.

Case 2_ Uncertain Entries:
3. G.add((BNode('b' + str(nodeCounter)), RDF['value'],
 Literal(valueLinkSeperator(con[inncon])[0],
 datatype=valueLinkSeperator(con[inncon])[1])))

Case 3_ Uncertain Entries:
3. G.add((BNode('b' + str(nodeCounter)), RDF['value'],
 Literal(con[inncon])))

Finally, we define a new directory name ‘rdf’, and use it to save the solution model (solution

2 in this case) under name ‘modelGraphDynamic_G2’.

Generating the Serialization Syntaxes RDF/XML and Turtle

Based on the selected solution we first define the required namespaces as explained in the

former section. Then the input data is split into two tables; 'Data Table' and 'Uncertainty

Implementation of the Uncertainty Solutions Chapter 5
Deploying SAUN

 70

Table' as described above. During generation, the corresponding cell in the 'Uncertainty

Table' is checked for emptiness for each cell in the 'Data Table'. If empty, the cell in the 'Data

Table' holds certain data, otherwise uncertain and will then be modelled according to the

selected uncertainty solution. After iterating all cells, the process is complete, and the

generated file will download automatically.

When Prof. Heath suggested that the Turtle syntax might be easier to read than the

RDF/XML, regarding the Nomisma-Cookbook. We decided to also add Turtle here as

another serialization option.

RDF-Graph Visualizer

Under Graph, the recent generated solutions can be displayed in their RDF graph

representation. For now, this tool can only display the generated RDF/XML solutions in RDF

graphs. It can though be further modified to be capable of displaying any RDF/XML or Turtle

snippets.

SPARQL-Query and Further Features

SAUN also has a SPARQL request page. This page allows the user to view a list of all triples

of the generated solution and search them for specific keywords, like search for specific coin

ID, property, or property value.

 It also has a Fuseki Control page where the user can change the ‘dataset name’ that

holds the RDF file to be queried, the address, the port, and the memory size of the server.

Challenges

First challenge was to determine the correct technologies, that make it possible to convert out

ideas to a functional application.

It was not possible to use rdflib to deploy every cell of the input file to a rdf/xml file.

Therefore, we used the function eval() in python to build the code as string and then push it

as a code in python. This however do not work with any URI that comes in the subject, object,

or datatype position, e.g., when using the Nomisma-IDs, or XML-Schema. Because the

abbreviated approach of using namespace-prefixes is not meant to be used in those positions,

Implementation of the Uncertainty Solutions Chapter 5
Deploying SAUN

 71

and to use it, the namespaces must be defined using XML-Base or XML-Entities. We were

only able find a way to insert a namespace as ‘XML-Base’ (Rörtgen, 2020), but we did not

apply it since our coins are fake and not part of any dataset. We could not define any

namespace using xml-entities, therefore in our implementation, the RDF/XML output file do

not include, for example, the namespace-string of the Nomisma-IDs, which comes in the

object position as a property-value, nor that of XML-Schema, that used to define the object-

datatype.

Also, analysing, for example, a property URI and find an approach to making it

dynamically recognizable by the application was challenging.

Vision

We can think of SAUN being expanded in the future to include more uncertainty modeling

solution, for this topic is yet unclosed and there may arise new solution suggestions to be

compared and tested. While creating implementing those eight solutions we worked with

limited number of ontologies and the only static part of the implementation was to define the

prefixes to be used for each of those ontologies. To make this process of identifying the used

ontologies dynamic we can imagine applying a deep clustering algorithm to cluster the input

headers and content. The algorithm would then cluster URIs without the term name (i.e.,

without the property- or class- name), and generate a prefix to each cluster.

Implementation of the Uncertainty Solutions Chapter 5
Summary

 72

5.3 Summary
In this chapter we presented a web application, Serializing Application for Uncertainty in

Numismatic (SAUN). This application allows the user to model their input data —which is

of the format Excel or CSV—according to one of the eight modeling solutions for

uncertainty. SAUN automatically converts the input file into one of a selected serialization

syntax (RDF/XML or Turtle), view the graph representation of the converted data, display-

and search through all triples of the converted data.

 To compare the eight-uncertainty modeling solutions we are going to run a test

measuring the runtime and memory consumption querying data from those solutions. For this

purpose, we will be using SAUN to generate four Excel-files of different number of entries.

The test procedure and results are presented in the next chapter.

Evaluation of the Uncertainty Solutions Chapter 6
Runtime and Memory-Usage Measurement

 73

6. Evaluation of the Uncertainty Solution
In this chapter we will perform two types of tests on the eight uncertainty modeling solutions.

One test is for measuring the time running various SPARQL queries on each model. We

performed an automated test that runs each query five times on each solution and stores the

results in an Excel-file. The other test is for measuring the memory usage by each query. For

this, we run a manual test and documented both query runtime and memory usage.

6.1 Runtime and Memory-Usage Measurement
To perform the test, we generated four Excel-files with: 2 entries, 100,000 entries, 500,000

entries and 1 million entries. Each file includes one coin minted in Comama is certain,

whereas for the rest of the coins this is uncertain, example in Figure 6. 1. The values under

'hasMint*hasUncertainty' indicating the certainty (value = 0), or uncertainty (0 < value ≤ 1),

only coin_0 is certain. The values for uncertainty are randomly generated and meant to

indicate the uncertainty/confidence level.

Figure 6. 1: Screenshot an Excel file generated for the test.

We also wrote five SPARQL queries for each solution, the queries are as follows:

Q1. Returns coins with certain mint only and the value it holds. (Coin_0, nm:comama)

Q2. Returns coins with mint whether certain or uncertain. (All coins)

Evaluation of the Uncertainty Solutions Chapter 6
Runtime and Memory-Usage Measurement

 74

Q3. Returns coins with certain or uncertain Mint and the value it holds. (All coins, each with

nm:comama)

Q4. Returns coins with certain Mint only, without the value it holds. (Coin_0)

Q5. Returns coins with uncertain properties, the value they hold, and the uncertainty/confidence

level (for S3, S5). (All coins with uncertain mint, each with the property ‘nmo:haMint’,property-value

‘nm:comama’ and a numeric value 𝑙, 𝑙 ∈ [0,1] , for the uncertainty/confidence level)

Q5. Returns coins with uncertain properties and the value they hold (for S1, S2, S4, S6-S8, since they

do not have uncertainty/confidence level). (All coins with certain mint, each with the property

‘nmo:haMint’ and property-value ‘nm:comama’)

Some queries are identical for different solutions like, Q1 in (S2, S4, S5 & S7) and Q2 in

(S1, S3 & S6), which is the following:

SELECT ?Coin WHERE {?Coin nmo:hasMint nm:comama. }

All queries can be found in Appendix 3.

We listed the queries, each as string, inside a class called ‘testQueries’ and created a variable

called ‘PREFIX’ that contain, also as string, all prefixes required for all queries. This variable

is appended to each query at run.

 In the automated test the queries are pushed to the fuseki server, and the result

retrieved in JSON format. Each query is executed five times for every solution, the time by

each execution is measured and retrieved individually, then the average and median of all

five execution iterations are calculated. Table 6. 1 shows the test results of the runtime of the

five queries (0 - 4) on solution 1.

Table 6. 1: The test results of the function dynamicTest() measuring the runtime of the
five queries (0 - 4) on solution 1 on the dataset of 100K entries.

Queries Time per Run for S1 Average Time Medien
0 [1.23, 0.39, 0.36, 0.34, 0.39] 0.54 0.39
1 [0.42, 0.36, 0.36, 0.35, 0.37] 0.37 0.36
2 [0.64, 0.63, 0.59, 0.64, 0.60] 0.62 0.63
3 [0.43, 0.38, 0.36, 0.38, 0.36] 0.38 0.38
4 [1.41, 1.38, 1.40, 1.41, 1.35] 1.39 1.40

Evaluation of the Uncertainty Solutions Chapter 6
Runtime and Memory-Usage Measurement

 75

Before we present the test results of all solutions, we would like first to give a reminder of

the eight solutions.

Solutions:

S1. RDF-Reification with CIDOC-CRM E13, P140, P141, and BMO Likelihood.

S2. Adding uncertainty directly to the property path with UN hasUncertainty.

S3. Assigning reliability instead of uncertainty.

S4. Using CRMinf to assign belief values.

S5. Expanding the CRM properties with .2 properties.

S6. RDF-Reification with EDTFO class UncertainStatement.

S7. Based on S2, with EDTFO class ApproximateStatement instead of UN hasUncertainty.

S8. Adding all uncertain properties within UN UN hasUncertainty.

We run the automatic test on all solutions generated with the dataset of 100K entries, that has

one coin with Mint=comama (certain) and the rest are coins with Mint=comama (uncertain).

The test result of each solution is stored in a table like Table 6. 1. We collected the average

of each query, for each solution and listed them in Table 6. 2. Reading the test result we can

observe the following:

• Retrieving coins with certain values with Q1 is a lot faster by solutions S2, S4, S5,

S7 of (0.01s each) and S8 (0.03s). This remains fairly stable with Q4 which is similar

to Q1, except it do not return the property value ‘nm:comama’. The slowest retrieval

of coins with certain values here compared to the rest of the solutions is S6 & S3 of

(0.54s & 0.59s) in Q1 and of (0.56s & 0.57s) in Q4. The result of S1 was (0.39s &

0.38s) with Q1 & Q4 respectively.

• In retrieving coins with certain or uncertain mint Q2 by S1 (0.36s), S6 (0.38s) & S3

(0.40s), and that with the value they hold Q3 with S1 (0.63s), S3 (0.66s) & S6 (0.67s),

was the fastest compared to the rest of the solutions. Next in line comes S5 (0.48s),

S2 (0.59s) S4 (0.66s) & S7 (0.68s) with Q2, and S7 (0.78s), S5 (0.83s) S4 (1.04s) &

S2 (1.35s) with Q3. The slowest with these two queries compared to the other

solutions was S8 (0.91s), (1.56s) with Q2, Q3 respectively.

Evaluation of the Uncertainty Solutions Chapter 6
Runtime and Memory-Usage Measurement

 76

• Retrieving uncertain properties with the value they hold and if exists a

confidence/uncertainty level with Q5, was fastest by solutions S8 (0.80s). With S2

S7 was (0.82s each) were slightly better compared to solutions S5 (0.95s) & S4

(1.02s). With S1 & S6 it was (1.40s & 1.43s), and the slowest retrieval was with S3

(1.95s).

With S1, S3 & S6 retrieving uncertain data was faster, while querying certain data is

significantly faster with S2, S4, S5, S7 & S8. Table 6. 3 lists queries that are exactly the same

by some solutions, and Table 6. 4 shows which solutions have the same query Qi.

 Aside from the queries, S8 has the smallest number of triples of less that 200k for the

100k entries. Followed by S2 (S7, which is based on S2) & S5 with each of slightly less than

300k triples. S3 has the largest number of triples of about 900k.

Table 6. 2: The average/median runtime of running the five queries automatically on
all solution 1-8.

Solutions
+ (Number of

triples)

Q1
certain + value

Q2
certain & uncertain

Q3
certain & uncertain

+ value

Q4
certain

Q5
uncertain +

property, value &

confidence level
S1 (599,995) 0.54 / 0.39 0.37 / 0.36 0.62 / 0.63 0.38 / 0.38 1.39 / 1.40

S2 (299,998) 0.01 / 0.01 0.67 / 0.59 1.45 / 1.35 0.06 / 0.06 0.82 / 0.82

S3 (899,996) 0.75 / 0.59 0.39 / 0.40 0.65 / 0.66 0.62 / 0.57 1.98 / 1.95

S4 (699,994) 0.01 / 0.01 0.81 / 0.66 1.04 / 1.04 0.08 / 0.06 1.00 / 1.02

S5 (299,999) 0.01 / 0.01 0.56 / 0.48 0.89 / 0.83 0.06 / 0.05 0.97 / 0.95

S6 (994 ,996) 0.67 / 0.54 0.40 / 0.38 0.66 / 0.67 0.58 / 0.56 1.43 / 1.43

S7 (299,998) 0.01 / 0.01 0.66 / 0.68 0.80 / 0.78 0.05 / 0.05 0.80 / 0.82

S8 (199,999) 0.05 / 0.03 0.98 / 0.91 1.55 / 1.56 0.05 / 0.04 0.80 / 0.80

Table 6. 3: Queries that are equal in some solutions.

Q1 Q2

S2, S4, S5, S7 S1, S3, S6

Evaluation of the Uncertainty Solutions Chapter 6
Runtime and Memory-Usage Measurement

 77

Table 6. 4: Different solutions that share the same queries.

S2, S4, S5, S7 S1, S3, S6

Q1, Q4 Q2, Q3

With the automatic test we did not skip the cold start (Stamer, 2020), which occurs on the

first run of the query after the data has been uploaded to the server. Also, we could not include

the memory consumption to the automatic test, therefore, we performed a manual test. In the

manual test we run each query Q1-Q5 for all solutions S1-S8 and on each dataset 2-coins –

1M-coins were manually about 10 times and the result taken is the most frequently occurring.

The result of this test is displayed in Table 6. 5.

Example of the Test-Process:

1. Generate S1-S8 for dataset X.

2. Turn Fuseki off/on and upload a solution Si.

3. Run query Qij ten-times and take the most frequent result (run-time & memory

usage).

4. Repeat step 3 for all queries.

5. Go to step 2.

The runtime for the queries Q1-Q5 was measured in seconds as following:

𝑅𝑢𝑛	𝑇𝑖𝑚𝑒	𝑄! = 	𝑇𝑖𝑚𝑒"#$%! − 𝑇𝑖𝑚𝑒&'()'%!

Memory usage (cache) for each query was measured via Python library memory_profiler.

Evaluation of the Uncertainty Solutions Chapter 6
Runtime and Memory-Usage Measurement

 78

Table 6. 5: Test results of the runtime and memory consumption of the five queries on
each solution (1 - 8). Each solution was generated for four data sizes; with 2 coins, 100K
coins, 500K coins and 1M coins, where each contains 1 coin with certain mint in
Comama, and for the rest this is uncertain.

 Number
 of
 Entries

Number
 of
Triple

Q1

Q2

Q3 Q4 Q5

Run-
Time/
Sec.

Cache
MiB

Run-
Time/
Sec.

Cache
MiB

Run-
Time/
Sec.

Cache
MiB

Run-
Time/
Sec.

Cache
MiB

Run-
Time/
Sec.

Cache
MiB

S1
2 7 0.14 59.9 0.14 59.8 0.14 59.7 0.14 59.6 0.15 59.6

100,000 599,995 0.42 59.6 0.40 122.9 0.68 159.8 0.41 59.6 1.55 199.7
500,000 2,999,995 2.05 59.6 2.13 373.0 3.68 556.8 2.14 59.5 7.50 748.9

1,000,000 5,999,995 4.58 59.7 4.12 682.8 6.85 1052.5 4.36 59.7 15.01 1437.4

S2
2 4 0.14 59.6 0.14 59.7 0.14 59.9 0.15 71.2 0.14 59.6

100,000 299,998 0.14 59.8 0.72 122.8 1.38 159.2 0.20 71.2 0.96 159.9
500,000 1,499,998 0.15 59.7 3.27 372.7 6.78 556.7 0.47 70.8 4.73 556.8

1,000,000 2,999,998 0.14 59.7 6.17 682.8 12.96 1052.8 0.74 71.0 8.77 1054.1

S3
2 11 0.14 59.6 0.14 59.8 0.14 59.8 0.14 59.6 0.14 59.9

100,000 899,992 0.67 59.5 0.48 123.1 0.74 160.2 0.71 59.7 1.91 167.0
500,000 4,499,992 3.14 59.6 2.16 373.0 3.53 556.4 3.45 59.7 10.06 593.8

1,000,000 8,999,992 6.75 59.7 4.05 683.2 6.96 1052.4 7.22 59.7 20.79 1127.8

S4
2 8 0.14 59.7 0.14 59.7 0.14 59.8 0.14 59.6 0.14 59.6

100,000 699,994 0.14 59.9 0.78 122.9 1.14 159.6 0.19 59.7 1.12 160.5
500,000 3,499,994 0.14 59.7 3.52 371.4 5.53 556.3 0.39 59.6 5.48 556.4

1,000,000 6,999,994 0.19 59.6 7.06 683.3 10.66 1053.2 0.72 59.8 10.44 1054.2

S5
2 4 0.15 59.9 0.15 59.9 0.15 59.8 0.15 71.3 0.14 59.6

100,000 299,998 0.14 59.8 0.62 122.8 0.97 159.6 0.21 71.3 1.08 166.6
500,000 1,499,998 0.15 59.8 2.80 374.9 4.68 556.0 0.39 71.4 5.35 594.1

1000,000 2,999,998 0.14 59.8 5.19 682.9 8.78 1052.7 0.73 71.3 10.09 1127.9

S6
2 6 0.14 59.7 0.14 59.7 0.14 59.6 0.14 59.7 0.14 59.9

100,000 499,996 0.76 59.7 0.49 122.1 0.78 159.3 0.74 59.8 1.48 198.5
500,000 2,499,996 3.17 59.7 2.21 372.3 3.76 556.7 3.20 59.6 7.28 748.7

1,000,000 4,999,996 5.94 59.7 3.99 683.2 6.58 1052.4 6.20 59.8 13.68 1436.6

S7
2 4 0.14 59.6 0.14 59.7 0.15 71.3 0.15 71.5 0.14 59.6

100,000 299,998 0.14 59.7 0.72 122.8 1.01 171.6 0.21 71.4 0.97 160.3
500,000 1,499,998 0.15 59.7 3.22 373.9 4.85 568.3 0.49 71.3 4.65 556.2

1,000,000 2,999,998 0.14 59.7 6.44 682.7 9.04 1064.7 0.65 71.3 8.99 1052.3

S8
2 3 0.16 71.5 0.15 59.6 0.16 59.7 0.16 71.4 0.18 59.7

100,000 199,999 0.18 71.3 1.04 123.0 1.67 160.5 0.20 71.4 0.94 159.5
500,000 999,999 0.27 71.3 5.69 371.5 8.87 556.6 0.35 71.2 4.81 556.3

1,000,000 1,999,999 0.40 71.5 9.87 682.8 15.41 1052.9 0.51 71.1 8.73 1052.1

Observation, focusing on the dataset of 1M entries:

From Table 6. 5 we can see that the size of the dataset do not affect the query runtime for

retrieving certain data, with Q1 & Q4, at solutions S2, S4, S5 and S7. Retrieving certain data

is significantly faster at these solutions (Q1 in green), even with large dataset of 1M entries,

comparing with the rest of the solutions. While S1, S3 & S6 have lower query runtime in

retrieving both certain and uncertain properties with Q2 & Q3, and S8 with the highest query

runtime. Finally, the runtime querying uncertain properties with the value they hold, and if

exists a confidence/uncertainty level, using Q5 was the lowest (Q5 in green) with S2, S7 &

S8 at the dataset of 1M entries.

Evaluation of the Uncertainty Solutions Chapter 6
Runtime and Memory-Usage Measurement

 79

The memory consumption remained the same with each solution, increasing with larger

dataset.

Evaluation of the Uncertainty Solutions Chapter 6
Evaluat ion

 80

6.2 Evaluation
The automatic test preformed on all eight solutions generated with SAUN using the dataset

of 100k coins, with only one coin minted in comama is certain and for the rest this is

uncertain. According to the combined mean runtime of all five requests, S5 took first place.

Followed by S7 and S4, which both based on S2 suggesting adding uncertainty directly to

the property path. We also compared the solutions according to number of triples, taking the

example of only two coins (Coin_1 minted in comama is certain, and for Coin_2 this is

uncertain). The results of these comparisons are displayed in Table 6. 6 and Table 6. 7. We

did not compare the solutions for memory consumption in querying data, for it is equal in all

solutions and it depends on the size of data.

Table 6. 6: Ranking according to summation of the median runtime of all five queries,
at the dataset of 100k coins.

Ranking Solution Total Median-Runtime in all Queries (in seconds)
1 S5 2.32
2 S7 2.34
3 S4 2.79
4 S2 2.83
5 S1 3.16
6 S8 3.34
7 S6 3.56
8 S3 4.17

Table 6. 7: Ranking according to number of triples, at the dataset of 2 coins, one of
which has uncertain property.

Ranking Solution Number of Triples
1 S8 3
2 S2 4
3 S7 4
4 S5 4
5 S6 6
6 S1 7
7 S4 8
8 S3 11

Evaluation of the Uncertainty Solutions Chapter 6
Evaluat ion

 81

Our Experience

S2 was easier to work with, it is not complicated, requires little number of triples and there

is no need to define extra new properties for uncertain cases like S5. We used the idea

presented in this solution, which is adding uncertainty directly to the property path, in

modeling other solutions that all ranked better than those using RDF reification. With S2 one

has multiple options to express that a piece of information, example:

A statement of (Subject Predicate Object) has uncertainty, which then can refer to:

• type of uncertainty, as defined by the W3C (Laskey, et al., 2008),

• one of the pre-defined Nomisma-IDs for uncertainty,

• specific uncertainty level, in percentage or degree of likelihood.

We made S7 based on S2, to simply refer to a statement as being uncertain or approximate,

but one can still add the type and level of the uncertainty to it.

Expressing the level of uncertainty was not in the original proposal of S5, we added that

using amt:weight, and still it ranked first in query-runtime. Without this extra triple, S5 would

only use 2 triples to express uncertainty and might score faster query-runtime. But this

solution requires creating new properties for all possible occurring of uncertainty, property

explosion.

The idea of S8 was to express multiple occurring of uncertainty in a simple way, example:

• Subject has uncertainty in:

- Property 1 with value Object 1

- Property 2 with value Object 2

- …

- Property n with value Object n

S3 was the most complex solution to understand and implement, it also ranked last in both

query-runtime and number of triples.

Summary and Conclusion Chapter 7

 82

7. Summary and Conclusion
Objectives of this thesis were to create modeling use cases of the Nomisma-Ontology,

provide solution suggestions for modelling layers of a hoard vessel and comparing and

evaluating solutions for modeling uncertainties in the domain of numismatics.

In the theoretical part of this work, we presented the foundations of the topics covered in this

thesis. Starting with an introduction to the semantic web and methods and standards used to

represent information on the web in way understandable for both humans and machines.

Ending with an overview of the importance of representing archaeological artifacts on the

web with a focus on ancient coins and hoards.

Working on achieving the first objective, we created use cases for the different classes and

properties of the Nomisma-Ontology. The procedure was first writing the use cases in

RDF/XML then using an RDF visualization tool (RDF Grapher) to represent each use case

as an RDF-graph. We also used an RDF validation and concerting tool (RDF-Converter) to

convert the RDF/XML format of the use cases into Turtle. Browsing through the different

datasets under Nomisma.org, and the dataset provided by Dr. Tolle, helped in understanding

the numismatic concepts and creating the use cases. Finally, created within a wiki-page some

sort of a cookbook of these use cases as a guide to using this ontology for representing

numismatic objects on the web. We posted each use case individually to facilitate the process

of future correction and addition by the experts in the Nomisma.org committee.

For modeling the layers of a hoard vessel, we presented two approaches. One approach

handles the layers as stratigraphic units —a Nomisma-class– and uses the Nomisma-

properties isAbove, isBelow and isEqual—based on Harris-Matrix– to describe the position

of each layer within the vessel. The other approach uses the RDF-Collection, a closed

container, within which the entries are organized by the order of inclusion.

Summary and Conclusion Chapter 7

 83

The use or storage circumstances of ancient coins can detract their informative features what

make their identification a difficult, leaving experts sometimes uncertain of their

classification. Towards accomplishing the last objective of this thesis, we presented eight

uncertainty modeling solutions, visualized these using an example of two coins, one is certain

to be minted in comama, and for the other this is uncertain.

 In order to test these eight solutions on large datasets of 100K- to 1M-coins, we

created a web application, implemented the eight solutions within it and used it to generate

an RDF/XML file from a given Excel/CSV file based on one of the solutions models. We

tested the solutions according to query- runtime and memory consumption in retrieving

certain and uncertain data.

 The result of this test showed that solution 5, that is based on defining new CIDOC

CRM .2 properties, was fastest in the total median runtime (the median runtime of five

queries summarized). However, we modeled this solution according to the idea proposed by

solution 2, which is adding the uncertainty directly to the property path. Solution 2 was easier

to work with, it is not complicated, requires little number of triples and there is no need to

define extra new properties for uncertain cases like S5.

Finding a uniformed modeling approach for uncertain information is a topic still open for

discussion and solution suggestions. We believe that the web applications we created —

which is called SAUN, a Serialization Application for Uncertainty in Numismatic —can be

expanded by implementing further solution models in it, what would facilitate the

comparison and testing of these models.

Bibliography

 84

8. Bibliography

Yu, L. (2011). A Developer’s Guide to the Semantic Web. Springer.
Moraitoua, E., Christodouloua, Y., & Caridakisa, G. (2021). Semantic models and services

for conservation and restoration of cultural heritage: a comprehensive survey.
Semantic web journal.

Kemmers, F., & Myrberg , N. (2011). Rethinking numismatics: the archaeology of coins.
Cambridge University Press , 87-108.

Laskey, K. J. (2008, March 31). Uncertainty Reasoning for the World Wide Web. Retrieved
from W3C: https://www.w3.org/2005/Incubator/urw3/XGR-urw3/

Niccolucci, F. H. (2016). Expressing reliability with CIDOC CRM. Springer.
Doerr, M. L. (2020). Implementing the CIDOC Conceptual Reference Model in RDF,

Version 1.1. CIDOC CRM.
Alexiev, V. (2013, February 12). Confluence. Retrieved August 2021, from BMX - BM

Extensions to CRM: https://confluence.ontotext.com/display/ResearchSpace/BMX
Alexiev, V., & Mahmud, J. (2012, November 15). Confluence. Retrieved August 2021,

from BM Association Mapping:
https://confluence.ontotext.com/display/ResearchSpace/BM+Association+Mapping

Ackermann, R., Codine, F., Dahmen, K., Duyrat, F., Gruber, E., Heath, S., . . . Wigg-Wolf,
D. (n.d.). Nomisma.org. Retrieved Mai 2022, from http://nomisma.org/

W3C. (2012). OWL 2 Web Ontology Language Primer. Retrieved April 2022, from W3C
Primer: https://www.w3.org/TR/owl2-primer/

W3C. (2015, April 10). Ontology. Retrieved April 2022, from W3C:
https://www.w3.org/standards/semanticweb/ontology

W3C. (2013, March 21). SPARQL 1.1 Query Language. Retrieved April 2022, from
https://www.w3.org/TR/sparql11-query/

W3C. (2013). SPARQL 1.1. Retrieved April 2022, from
https://www.w3.org/TR/2013/REC-sparql11-overview-20130321/

W3C, Eric Prud'hommeaux, Steve Harris, Garlik, a part of Experian, Andy Seaborne, The
Apache Software Foundation,. (2013, March 21). SPARQL 1.1 Query Language.
Retrieved April 2022, from https://www.w3.org/TR/sparql11-query/

Walker, A. (2018, March 28). Hoards and other coin finds. Retrieved September 2021,
from Coins Weekly: https://coinsweekly.com/hoards-and-other-coin-finds-part-i-
hoards/

Thiery, F. U. (2018, January 19). Academic Meta Tool. Retrieved February 2022, from
Academic Meta Tool Vocabulary: http://academic-meta-tool.xyz/vocab/

Thiery, F. N.-W. (2021, September 22). Zenodo. Retrieved February 2022, from Nomisma
Uncertainty and AMT Vagueness Modelling Appraoches:
https://zenodo.org/record/5520978#.YnKayfFByrx

Shaw, R. (2021, April). Extended Date/Time Format (EDTF) concepts. Retrieved March
2022, from https://periodo.github.io/edtf-ontology/

Bibliography

 85

Nomisma.org. (2016, 03). Retrieved April 2022, from Llíria Hoard:
http://nomisma.org/id/lliria_hoard

Miles, A., & Brickley, D. (2005, November). W3C. Retrieved April 2022, from SKOS Core
Guide: https://www.w3.org/TR/2005/WD-swbp-skos-core-guide-20051102/

FORTH-ICS. (2014, Novwmber 19). CIDOC CRM. Retrieved January 2022, from CRM
PC: https://www.cidoc-crm.org/sites/default/files/CRMpc_v1.1_1.rdfs

Doerr, M. e. (2014, October). CIDOC CRM. Retrieved February 2022, from Issue 349:
Belief Values: https://cidoc-crm.org/Issue/ID-349-belief-values

Doerr, M. E. (2021). CIDOC CRM. Retrieved January 2022, from CIDOC CRM:
http://www.cidoc-crm.org/versions-of-the-cidoc-crm

Congress, T. L. (2022, February). The Library of Congress. Retrieved March 2022, from
Extended Date/Time Format (EDTF) Specification:
https://www.loc.gov/standards/datetime/

Berners-Lee, T. (2006). Linked Data. Retrieved April 2022, from
https://www.w3.org/DesignIssues/LinkedData.html

CIDOC-CRM. (2009). 45th joint meeting of the CIDOC CRM SIG and
SO/TC46/SC4/WG9; 38th FRBR – CIDOC CRM Harmonization meeting.
Foundation of Research and Technology -Hellas Vassilika Vouton, Heraklion.
CIDOC CRM.

Tolle, K., & Wigg-Wolf, D. (2014). Uncertainty Handling for Ancient Coinage. Big Data
Lab.

Tolle, K., Wigg-Wolf, D., Sabah, R., & Sabah, Z. (2022, April). Nomisma.org-Cookbook.
Retrieved from Hypothesis: https://nomisma.hypotheses.org/category/nomisma-org-
cookbook#

Wigg-Wolf, D., Tolle, K., & Kissinger, T. (2019, March 16). Nomisma.org:Numismatik
und das Semantic Web. Retrieved 04 2022, from Zenodo:
https://zenodo.org/record/4622251#.YiPb9_HMKrw

Vitale, V., Barker, E., & Kahn, R. (n.d.). Pelagios Network. Retrieved 05 2022, from
Pelagios Network: https://pelagios.org/

Laskey, K. J., Laskey, K. B., Costa, P. C., Kokar, M. M., Martin, T., & Lukasiewicz, T.
(2008, March 31). Uncertainty Reasoning for the World Wide Web. Retrieved 11
2021, from W3C: https://www.w3.org/2005/Incubator/urw3/XGR-urw3/

Gandon, F., Schreibe, G., & Beckett, D. (2014, February 25). RDF 1.1 XML Syntax.
Retrieved 03 2022, from W3C: https://www.w3.org/TR/rdf-syntax-grammar/

Earl, G., Sly, T., Chrysanthi, A., Murrieta-Flores, P., Papadopoulos, C., Romanowska, I., &
Wheatley, D. (2012, March 26-30). Archaeology in the Digital Era Volume II. In G.
Earl, T. Sly, A. Chrysanthi, P. Murrieta-Flores, C. Papadopoulos, I. Romanowska,
& D. Wheatley (Eds.), Computer Applications and Quantitative Methods in
Archaeology (CAA) (U. o. Press, Trans., Vol. II, pp. 487-497). Amsterdam:
Amsterdam University Press, University of Chicago Press.

Cripps, Paul J. (2012). Places, People, Events and Stuff; Building Blocks for
Archaeological Information Systems. In Archaeology in the Digital Era Volume II.
Amsterdam University Press, University of Chicago Press.

Bibliography

 86

Wickens, J. M. (n.d.). The Production of Ancient Coins. Retrieved 05 2022, from Lawrence
University:
http://www2.lawrence.edu/dept/art/BUERGER/ESSAYS/PRODUCTION.HTML

Stardog. (n.d.). Lerning SPARQL. Retrieved 01 2022, from Stardog Union at DOCS:
https://docs.stardog.com/tutorials/learn-sparql

Gruber , E., Heath , S., Meadows , A., Pett , D., Tolle , K., & Wigg-Wolf, D. (2012).
Semantic Web Technologies Applied to Numismatic Collections. In Archaeology in
the Digital Era Volume II (Vol. II).

Stamer, A. (2020). Cold Start. Retrieved 05 2022, from Bertiebswirtschaft Lernen:
https://www.betriebswirtschaft-lernen.net/en/explanation/cold-start-computer/

Oras, E. (2013). Importance of terms: What is a wealth deposit? Papers from the Institute of
Archaeology (PIA) - Student Jurnal, 22(Volume 22), 61-82.

Structured vs. Unstructured Data: A Complete Guide. (n.d.). Retrieved 05 2022, from
Talend: https://www.talend.com/resources/structured-vs-unstructured-
data/#:~:text=Structured%20data%20is%20highly%20specific,employs%20schema
%2Don%2Dread.

RDF Grapher. (n.d.). Retrieved 05 2022, from Living Laboratory of the Linked Data
Finland: https://www.ldf.fi/service/rdf-grapher

RDF-Converter. (n.d.). Retrieved 05 2022, from isSemantic: https://issemantic.net/rdf-
converter

Arndt, D., Broekstra, J., DuCharme, B., Lassila, O., Patel-Schneider, P. F.,
Prud'hommeaux, E., . . . Thompson, B. (2022, May 20). RDF-Star and SPARQL-
Star. Retrieved 06 2022, from W3C: https://w3c.github.io/rdf-star/cg-
spec/editors_draft.html#turtle-star

Brickley, D., Guha, R., & McBride, B. (2014, February 25). RDF Schema 1.1. Retrieved 02
2022, from W3C: https://www.w3.org/TR/rdf-schema/

Sharless, A., & al., e. (2021, July 15). Nomisma Ontology. Retrieved 06 2022, from
Nomisma.org: http://nomisma.org/ontology

Rörtgen, S. (2020, April 15). RDFlib. Retrieved 06 2022, from GitHub:
https://github.com/RDFLib/rdflib/issues/1003

Python Package Index. (n.d.). Retrieved 11 2021, from Python Package Index:
https://pypi.org/

Python Tutorials. (n.d.). Retrieved 11 2021, from Python Tutorials: https://pythonspot.com/
SPARQL Endpoint interface to Python. (n.d.). Retrieved 12 2021, from SPARQL Wrapper:

https://sparqlwrapper.readthedocs.io/en/latest/index.html#

Lists of Figures and Tables

 87

List of Figures

Figure 2. 1: RDF Graph the RDF/XML file describing that item_1 is of type coin and has
value 1d. .. 10
Figure 2. 2: Graph representation of our vocabulary in List 2. 2. 14

Figure 3. 1: Coin_1 has an inscription ‚zaeelii ‘, which is an instance of ‚Ethnic ‘. 25
Figure 3. 2: Coin_1 contains in the coin collection of the Goethe-University. 26
Figure 3. 3: Coin_1 was published in a reference work “An Inventory of Greek Coin
Hoards”. .. 26
Figure 3. 4: Coin_1 is lightly corroded. ... 26
Figure 3. 5: Coin_1 is extremely worn due to its use .. 27
Figure 3. 6: Coin_1 has value of denarius. .. 27
Figure 3. 7: Hoard_1 was found in year ‘1984’, in location_, and contains of table of
content_h1. .. 28
Figure 3. 8: Coin_1 has a control mark ‘M’, referring to the mint. 30
Figure 3. 9: Coin_1 has an iconography of a deity could be ‘apollo’, punched to it during
its circulation, not part of its production. .. 30
Figure 3. 10: Describing the obverse and reverse of Coin_1 .. 30
Figure 3. 11: The different pre-defined class instances of object type 31
Figure 3. 12: Representing the layers of a hoard in form of Harris Matrix 34
Figure 3. 13: Illustrates the Harris Matrix of the individual items contained in each layer 35
Figure 3. 14: RDF-Graph representation of hoard_x using the Nomisma properties
isAbove and isBelow to describe the different layers. .. 35
Figure 3. 15: RDF-Graph representation of layers 1-2, each with its items included using
CIDOC-CRM inverse property P167i_includes. .. 36
Figure 3. 16: Modeling layers of a hoards using RDF-Collection. 38
Figure 3. 17: RDF-Graph representation of layers 1-2, each with its items included using
CIDOC-CRM inverse property P167i_includes. .. 38

Figure 4. 1: Coin_1 minted in “Comama” is certain, but for Coin_2 this is uncertain. (a) as
text for the value of property hasMint, (b) as text in the coin description, (c) un-specified
Nomisma-id for uncertain features in general and (d) using specified Nomisma-id for
uncertain mint like; “Uncertain Mint 16” for uncertain “Ptolemaic Mint 16 in Asia-Minor”.
Nomisma.org provides a number of specified IDs for possible uncertain features (concepts)
(Laskey K. J., 2008). ... 42
Figure 4. 2: Using RDF-Reification to express that it is uncertain whether Coin_2 was
minted in Comama, while for Coin_1 is certain. .. 43
Figure 4. 3: CDOC_CRM/ RS Uncertainty modeling similar to RDF_Reification. Coin_2
minted in Comama is uncertain, while for Coin_1 it is certain. ... 44
Figure 4. 4: Expressing uncertainty for coin_2 minted in Comama 44

Lists of Figures and Tables

 88

Figure 4. 5: Solution 3; assigning reliability instead of uncertainty and passing a reliability
value through P90_has value. Treating the reliability assessment as E13_ Attribute
Assignment. .. 46
Figure 4. 6: Solution 3; asserting the reliability of multiple statements of different coins. 46
Figure 4. 7: Solution 3; asserting the reliability of two statements about the Coin_2 minted
in Comama with reliability 0.92, or minted in Cretopolis with reliability 0.08, and another
statement of a different coin; Coin_3 minted in Comama with reliability 0.85. 47
Figure 4. 8: Solution suggesting creating a new property of E13 ‘confidence value’, instead
of the idea proposed in solution 3, which is R1_Reliability_Assessment as sub-class of
E16_Measurment. ... 47
Figure 4. 9: Solution 4; using properties/classes from CRMinf to add uncertainty, based on
RDF-Reification. .. 48
Figure 4. 10: Solution 4; using properties/classes from CRMinf to add uncertainty, based
on Solution 1. .. 48
Figure 4. 11: Solution 4; using I5 Inference Making from CRMinf to add multiple beliefs
about Coin_2 minted either in comama, uncertain, or in cretopolis, more likely. 49
Figure 4. 12: Solution 5; creating CRM .2 properties to express uncertainty in every
possible aspect, using amt:weight to represent the degree of vagueness/uncertainty. 49
Figure 4. 13: edtfo:QualifiedStatement a sub-class of rdf:Statement,
edtfo:UncertainStatement and edtfo:ApproximateStament subclasses of
edtfo:QualifiedStatement. ... 51
Figure 4. 14: RDF-Reification with edtfo:UncertainStatement. .. 52
Figure 4. 15: Using EDTFO: ApproximateStatement, added directly in the property path,
based on solution 2. .. 53
Figure 4. 16: A simple version of S8, Coin_2 has uncertainty which is the pace of mint
being Comama. ... 54
Figure 4. 17: A slight complex version of S8, Coin_2 has 2 certain and 3 uncertain
features. ... 54
Figure 4. 18: A more complex version of S8, Coin_2 has 2 certain and 4 uncertain
properties, most of which with more additional features. ... 55
Figure 4. 19: Turtle-Star in graph representation. ... 57
Figure 4. 20: Graph representation of RDF Reification. ... 58
Figure 4. 21: Graph representation of Solution 2. ... 58
Figure 4. 22: Using asserted triple for certain features, and quoted triple to refer to a
statement being uncertain. .. 59

Figure 5. 1: The generated CSV-file of 500-coins with few properties and random
property-values, first approach. .. 61
Figure 5. 2: A basic illustration of the main goal of SAUN, from an input of excel/csv data,
generate an output of RDF/XML file based on the uncertainty modeling approaches. 62
Figure 5. 3: The generated Excel-file of 2-coins with one property and a column for
representing the uncertainty in that property for each coin, second approach. 63
Figure 5. 4: Separating the input data into two groups, one contains the actual
properties/property-values, and the other contains the columns with the headers with
propertyName*hasUncertainty. .. 66

Lists of Figures and Tables

 89

Figure 6. 1: Screenshot an Excel file generated for the test. ... 73

List of Tables
Table 6. 1: The test results of the function dynamicTest() measuring the runtime of
the five queries (0 - 4) on solution 1 on the dataset of 100K entries. 74
Table 6. 2: The average/median runtime of running the five queries automatically on
all solution 1-8. .. 76
Table 6. 3: Queries that are equal in some solutions. .. 76
Table 6. 4: Different solutions that share the same queries. ... 77
Table 6. 5: Test results of the runtime and memory consumption of the five queries on
each solution (1 - 8). Each solution was generated for four data sizes; with 2 coins,
100K coins, 500K coins and 1M coins, where each contains 1 coin with certain mint in
Comama, and for the rest this is uncertain. ... 78
Table 6. 6: Ranking according to summation of the median runtime of all five queries,
at the dataset of 100k coins. ... 80
Table 6. 7: Ranking according to number of triples, at the dataset of 2 coins, one of
which has uncertain property. ... 80

Lists of Figures and Tables

 90

Used Tools & Work Distribution

 91

Used Tools:
To create the RDF-graphs we used the web service RDF- Grapher by Linked Data Finland:

RDF Grapher: https://www.ldf.fi/service/rdf-grapher

To convert the RDF/XML format into the Turtle format we used the online tool

isSemantic.net/ RDF CONVERTER.

isSemantic.net: https://issemantic.net/

To create Figure 4. 19 and Figure 4. 22 we used isSemantic.net/ RDF VISUALIZER, to

visualize the Turtle-Star lines as graphs, then we redraw those to keep a consistent look of

all RDF-graphs.

Work Distribution:
Chapters 2, 4 & 6: Zeena & Ram

Chapters 1, 3: Zeena sabah

• Creating the Nomisma-Cookbook: Zeena & Ram

Chapters 5, 7: Ram Sabah

• Implementing the Uncertainty Solutions in SAUN: Zeena & Ram

Appendices

 92

Appendices

Appendix 1: Nomisma.org-CookBook

Appendix 2: RDF/XML Format of the Uncertainty-Solutions

Appendix 3: Queries

Appendix 4: Tables

Appendix 5: Main Classes and Functions of SAUN

Appendix 6: SKOS & OWL

Appendices
Appendix 1: Nomisma.org-CookBook

 93

Appendix 1: Nomisma.org-CookBook
Modeling the Nomisma-Ontology

This appendix includes all modeling use cases of the Nomisma.org-Cookbook.

Appendices
Appendix 2: RDF/XML format of the Uncertainty Solut ions

 94

Appendix 2: RDF/XML Format of the Uncertainty-Solutions
This appendix shows the RDF/XML format of the uncertainty modeling solutions presented
in chapter 4.

Namespaces for all solutions:
nmo="http://nomisma.org/ontology#"
nm="http://nomisma.org/id/"
bmo="http://collection.britishmuseum.org/id/ontology/"
xsd="http://www.w3.org/2001/XMLSchema#"
rdfs="http://www.w3.org/2000/01/rdf-schema#"
crm="http://www.cidoc-crm.org/cidoc-crm/"
un="http://www.owl-ontologies.com/Ontology1181490123.owl#"
rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
crminf="http://www.ics.forth.gr/isl/CRMinf/"
amt="http://academic-meta-tool.xyz/vocab#"
dcterms="http://purl.org/dc/terms/"
dcmitype="http://purl.org/dc/dcmitype/"
position="https://sws.geonames.org"
skos="http://www.w3.org/2004/02/skos/core#"
nmo="http://nomisma.org/ontology#"
meta="http://www4.wiwiss.fu-berlin.de/bizer/d2r-server/metadata#"
foaf="http://xmlns.com/foaf/0.1/"
owl="http://www.w3.org/2002/07/owl#"
db="https://data.corpus-nummorum.eu/"

Solution 1:
<rdf:Description rdf:about="Coin_1">
 <nmo:hasMint rdf:resource="nm:comama"/><!--certain-->
</rdf:Description>
<rdf:Description rdf:about="Coin_2">
 <nmo:hasMint rdf:resource="nm:comama"/><!--uncertain-->
</rdf:Description>
<rdf:Description>
 <crm:P140_assigned_attribute_to rdf:resource="Coin_2"/>
 <crm:P141_assigned rdf:resource="nm:comama"/>
 <bmo:PX_Property rdf:resource="nmo:hasMint"/>
 <rdf:type rdf:resource="crm:E13"/>
 <bmo:PX_likelihood rdf:resource="nm:uncertain_value"/>
</rdf:Description>

Solution 2:
<rdf:Description rdf:about="Coin_1">
 <nmo:hasMint rdf:resource="nm:comama"/><!--certain-->

Appendices
Appendix 2: RDF/XML format of the Uncertainty Solut ions

 95

</rdf:Description>
<rdf:Description rdf:about="Coin_2">
 <nmo:hasMint>
 <rdf:Description><!--adding uncetainty directly to the property path-->
 <rdf:value rdf:resource="nm:comama"/>
 <un:hasUncertainty rdf:resource="nm:uncertain_value"/>
 </rdf:Description>
 </nmo:hasMint>
</rdf:Description>

Solution 3:
<rdf:Description rdf:about="Coin_1">
 <nmo:hasMint rdf:resource="nm:comama"/> <!--certain-->
</rdf:Description>
<rdf:Description rdf:about="Coin_2">
 <nmo:hasMint rdf:resource="nm:comama"/> <!--uncertain-->
</rdf:Description>

<rdf:Description rdf:nodeID="b0">
 <crm:P140_assigned_attribute_to rdf:resource="Coin_2"/>
 <crm:P141_assigned rdf:resource="nm:comama"/>
 <rdf:Property rdf:resource="nmo:hasMint"/>
 <rdf:type rdf:resource="crm:E13"/>
 <crm:T2_assessd_as_reliability rdf:nodeID="c0"/>
 </rdf:Description>
 <!--The statement saing "Coin_2 minted in comama" is 92% reliable-->
 <rdf:Description rdf:nodeID="c0">
 <rdf:type rdf:resource="crm:R2_Reliability"/>
 <crm:P90_has_value rdf:datatype="xsd:double">0.92</crm:P90_has_value>
</rdf:Description>

<rdf:Description rdf:nodeID="A1">
 <crm:T1_assessd_the_reliability_of rdf:nodeID="b0"/>
 <rdf:type rdf:resource="crm:R1_Reliability_Assessment"/>
</rdf:Description>

Solution 4:
<rdf:Description rdf:about="Coin_1">
 <nmo:hasMint rdf:resource="nm:comama"/><!--certain-->
</rdf:Description>
<rdf:Description rdf:about="Coin_2"><!—believed to be uncertain-->
 <nmo:hasMint>
 <crminf:I2_Belief>
 <crminf:J4_that rdf:resource="nm:comama"/>
 <crminf:J5_holds_to_be>uncertain</crminf:J5_holds_to_be>
 </crminf:I2_Belief>

Appendices
Appendix 2: RDF/XML format of the Uncertainty Solut ions

 96

 </nmo:hasMint>
</rdf:Description>

Solution 5:
<rdf:Property rdf:about="P189.2_uncertain_place">
 <rdfs:domain rdf:resource="crm:E13"/>
 <rdfs:subPropertyOf rdf:resource="crm:P189"/>
</rdf:Property>
<rdf:Description rdf:about="Coin_1">
 <nmo:hasMint rdf:resource="nm:comama"/>
</rdf:Description>

<rdf:Description rdf:about="Coin_2">
 <nmo:hasMint>
 <rdf:Description>
 <crm:P189.2_uncertain_place rdf:resource="nm:comama"/>
 <amt:weight>0.56</amt:weight>
 </rdf:Description>
 </nmo:hasMint>
</rdf:Description>

Solution 6:
<rdf:Description rdf:about="Coin_1">
 <nmo:hasMint rdf:resource="nm:comama"/>
</rdf:Description>

<rdf:Description rdf:about="Coin_2">
 <nmo:hasMint rdf:resource="nm:comama"/>
</rdf:Description>
<edtfo:UncertainStatement rdf:about="statement_c4">
 <rdf:subject rdf:resource="Coin_2"/>
 <rdf:predicate rdf:resource="nmo:hasMint"/>
 <rdf:object rdf:resource="nm:comama"/>
</edtfo:UncertainStatement>

Solution 7:
<rdf:Description rdf:about="Coin_1">
 <nmo:hasMint rdf:resource="nm:comama"/>
</rdf:Description>
<rdf:Description rdf:about="Coin_2">
 <nmo:hasMint>
 <edtfo:ApproximateStatement>
 <rdf:value rdf:resource="nm:comama"/>
 </edtfo:ApproximateStatement>
 </nmo:hasMint>
</rdf:Description>

Appendices
Appendix 2: RDF/XML format of the Uncertainty Solut ions

 97

Solution 8:
<!--Simple-->
<rdf:Description rdf:about="Coin_1">
 <nmo:hasMint rdf:resource="nm:comama"/>
</rdf:Description>
<rdf:Description rdf:about="Coin_2">
 <un:hasUncertainty>
 <rdf:Description>
 <nmo:hasMint rdf:resource="nm:comama"/>
 </rdf:Description>
 </un:hasUncertainty>
</rdf:Description>

<!--Complex-->
<rdf:Description rdf:about="Coin_2">
 <nmo:hasWeight rdf:datatype="xsd:decimal">17.2</nmo:hasWeight>
 <nmo:hasAxis rdf:datatype="xsd:decimal">2.0</nmo:hasAxis>
 <un:hasUncertainty>
 <rdf:Description>
 <nmo:hasMint rdf:resource="nm:comama"/>
 <nmo:hasDenomination rdf:resource="nm:large_ae2"/>
 <nmo:hasDie rdf:resource="http://.../Die_4"/>
 </rdf:Description>
 </un:hasUncertainty>
</rdf:Description>

<!—More Complicated-->
<rdf:Description rdf:about="Coin_4">
 <nmo:hasWeight rdf:datatype="xsd:decimal">17.2</nmo:hasWeight>
 <nmo:hasCorrosion rdf:resource="nm:heavily_corroded"/>
 <un:hasUncertainty>
 <rdf:Description>
 <nmo:hasMint>
 <rdf:Description>
 <rdf:value rdf:resource="nm:comama"/>
 <crm:P89_falls_within rdf:resource="nm:asia_minor"/>
 </rdf:Description>
 </nmo:hasMint>
 <nmo:hasDenomination rdf:resource="nm:large_ae2"/>
 <nmo:hasDie>
 <rdf:Description>
 <rdf:value rdf:resource="http://.../Die_4"/>
 <nmo:hasCorrosion rdf:resource="nm:extremely_corroded"/>
 <un:hasUncertainty>
 <rdf:Description>

Appendices
Appendix 2: RDF/XML format of the Uncertainty Solut ions

 98

 <nmo:hasDate>170-162 B.C.</nmo:hasDate>
 </rdf:Description>
 </un:hasUncertainty>
 </rdf:Description>
 </nmo:hasDie>
 <nmo:hasIssuer>
 <rdf:Description>
 <rdf:value rdf:resource="http://.../issuer_A"/>
 <rdf:value rdf:resource="http://.../issuer_B"/>
 <rdf:value rdf:resource="http://.../issuer_C"/>
 </rdf:Description>
 </nmo:hasIssuer>
 </rdf:Description>
 </un:hasUncertainty>
</rdf:Description>

Layers of a Hoard Vessel:
<nmo:Hoard rdf:about="hoard_1">
 <crm:P167i_includes>
 <nmo:StratigraphicUnit rdf:about="layer_1">
 <dcterms:tableOfContents rdf:resource="http://../content_l1"/>
 <nmo:isBelow rdf:resource="layer_2"/>
 </nmo:StratigraphicUnit>
 </crm:P167i_includes>
 <crm:P167i_includes>
 <nmo:StratigraphicUnit rdf:about="layer_2">
 <dcterms:tableOfContents rdf:resource="http://../content_l2"/>
 <nmo:isAbove rdf:resource="layer_1"/>
 <nmo:isEqual rdf:resource="layer_3"/>
 </nmo:StratigraphicUnit>
 </crm:P167i_includes>
</nmo:Hoard>
<nmo:StratigraphicUnit rdf:about="layer_1">
 <dcterms:tableOfContents>
 <dcmitype:Collection>
 <rdfs:label>Content of layer 1 of Hoard_X</rdfs:label>
 <crm:P167i_includes rdf:resource="item_1"/>
 </dcmitype:Collection>
 </dcterms:tableOfContents>
 <nmo:isBelow rdf:resource="http://../layer_2"/>
</nmo:StratigraphicUnit>
<nmo:StratigraphicUnit rdf:about="layer_2">
 <dcterms:tableOfContents>
 <dcmitype:Collection>
 <rdfs:label>Content of layer 2 of Hoard_X</rdfs:label>

Appendices
Appendix 2: RDF/XML format of the Uncertainty Solut ions

 99

 <crm:P167i_includes rdf:resource="item_2"/>
 <crm:P167i_includes rdf:resource="item_3"/>
 </dcmitype:Collection>
 </dcterms:tableOfContents>
 <nmo:isAbove rdf:resource="http://../layer_1"/>
</nmo:StratigraphicUnit>

Appendices
Appendix 3: Queries

 100

Appendix 3: Queries
This appendix includes the five queries used in chapter 6 to evaluate the solutions, in addition
to two counter queries.

Appendices
Appendix 4: Tables

 101

Appendix 4: Tables
This appendix includes two tables, Table A4. 1 lists the CIDOC-CRM properties that have
.1 properties, and Table A4. 2 lists the Nomisma.org properties and the CIDOC-CRM
properties that we created to use in solution 5.

Table A4. 1: CRM .1 Properties

CRM Property .1 Property
P3_has_note P3_has_type
P14_carried_out_by (performed) p14_in_the_role_of
P16_ used_specific_object (was used for) P16_mode_of_use
P19_was_intended_use_of (was made for) P19_mode_of_use
P62_ depicts (is depicted by) P62_mode_of_depiction
P69_ has_association_with (is associated with) P69_has_type
P102_has_title (is title of) P102_has_type
P107_ has_current_or_former_member (is current or former member of) P107_kind_of_member
P130_ shows_features_of (features are also found on) P130_kind_of_similarty
P136_ was_based_on (supported type creation) P136_in_the_taxonomic_role
P137_ exemplifies (is exemplified by) P137_in_the_taxonomic_role
P138_ represents (has representation) P138_mode_of_representation
P139_has_alternative_form P139_has_type
P144_ joined_with (gained member by) P144_kind_of_member
P189_ approximates (is approximated by) P189_has_type

Table A4. 2: CRM .2 Properties that we defined and used for solution 5

Nomisma Properties CIDOC-CRM .2 Properties

hasAxis P3_uncertain_value

hasDepth

hasMaxDepth

hasMinDepth

hasDiameter

hasMaxDiameter

hasMinDiameter

hasHeight

hasMaxHeight

Appendices
Appendix 4: Tables

 102

hasMinHeight

hasWidth

hasMaxWidth

hasMinWidth

hasWeight

hasWeightStandard

hasBearsDate

hasEndDate

hasStartDate

hasDenomination

hasCollection P107_uncertain_member

hasTypeSeriesItem

hasContemporaryName P102_uncertain_name_or_ethnic

hasScholarlyName

hasDie P16_uncertain_technique_or_object_used_for_creation

hasProductionObject

hasManufacture

hasCountermark P103_uncertain_symbole_or_features

hasMintmark

hasSecondaryTreatment

hasPeculiarity

hasPeculiarityOfProduction

hasCorrosion

hasWear

hasObjectType P67_uncertain_type

representsObjectType

hasAuthenticity P138_uncertain_authenticity

hasAuthority P14_uncertain_authority_or_issuer

Appendices
Appendix 4: Tables

 103

hasIssuer

hasMint P189_uncertain_place

hasFindspot

hasMaterial P137_uncertain_material

hasContext P136_uncertain_context_or_taxonomy

hasAppearance P139_uncertain_form

hasShape

hasEdge

hasFace P19_uncertain_mode

hasObverse

hasReverse

hasPortrait P62_uncertain_depiction

hasIconography

hasLegend

Appendices
Appendix 5: Main Classes and Functions of SAUN

 104

Appendix 5: Main Classes and Functions of SAUN
In this appendix we explain in detail the main classes and function of the web application

SAUN. In creating SAUN we used the following resources: (Python Tutorials), (SPARQL

Endpoint interface to Python), (Python Package Index).

Link to SAUN on GitHub: https://github.com/ramsabah/saun

Class readAndSeparate
This class is responsible for data preparation. First is to read the data file, which is either an

Excel- or a CSV- file. Any other file type will lead to an error, and a reload of the HTML-

index page. Reading the data file can be done in many ways, for an easier approach, we use

csv-library for reading the csv-files and pandas for reading Excel-files and writing both

CSV- and Excel-files.

 After selecting the data file and the modeling solution to be generated, the function

runDataPreparation() will be called. This function checks if the file has the “xlsx”

extension, which is for Excel, in the file name. If the “xlsx” extension exists in the file name,

we call the function convert(), which use the pandas library to read the Excel file and

rewrite it with the same name in the csv directory. In case the uploaded file is a csv, this step

will be skipped. Very important is to set the index to None and headers to True to make sure

we have a correct writing of the file, otherwise, the structure of the file will be invalid.

 Function readAndSeparate(). This function is very important for the solution

generation. In this function at first the csv file will be read, then we look if there are headers

defined as uncertain. If the header did not contain the keyword ‘http’ then it is uncertain

header otherwise it is an ontology term, more specifically, a property URI.
if 'http' in headers[iteration for each header]:

Now we need to separate the certain headers from the uncertain headers and store each group

with their data in a separate file. For this operation we defined four new arrays: Certain

headers, uncertain headers, certain data, and uncertain data. Then we use pandas Data frame

to generate tow Excel files. One file containing the certain data and headers, and the other

Appendices
Appendix 5: Main Classes and Functions of SAUN

 105

file containing the uncertain data and headers. The Headers for each array should be the input

in the header= value of the panda function (to Excel). We also set the index to None to prevent

pandas from generating index in the Excel file.
return csv.DictReader(„file as csv or excel with utf-8

encoding“).fieldnames

When this function is finished, we call the function convert() again to convert the file to

csv and overwrite the original csv file.

Functions getHeader() and getContent() for sending the data to the class Dynamic. In

the function getHeader() uses the function getFilename() to read the current converted

file. Since we are only interested to sending headers to the class Dynamic, we only return the

column-header-names.
return csv.DictReader(„file as csv or excel with utf-8

encoding“).fieldnames

The function getContent() have the same build structure as getHeader(). But, instead of

returning the fieldnames we return the content. This is done by using the function Next(),

that skips the headers.
Next(‘csv or excel file as ‘file’’), return(file)

Function seperateUncertainTable(), this function is invoked by the function

runDataPreparation() and has the target of separating the columns with the header of

uncertainty from the columns that contains a header of a property URI. The function

seperateUncertainTable() will first check whether the input file is an excel- or csv- file,

and store the data of the input file in a variable named ‘file’. To separate the uncertain

columns, we must also separate their entire data. Therefore, we define four arrays: tow arrays

carry the certain headers and the certain data, and tow arrays for carrying the uncertain

headers and the uncertain data. Furthermore, we need to save some data temporarily before

it is written in the four arrays, therefore we define another tow arrays as data holders (helper

arrays). Now we read the headers and the data of the input file and save each in a separate

list using the following code lines:
headers = csv.DictReader(file).fieldnames
data = csv.reader(file)

Appendices
Appendix 5: Main Classes and Functions of SAUN

 106

Starting the separation by looping the length of the headers and checking each element if the

keyword ‘http’ is included in their string. If True, the header will be appended in the array

of certain headers, and we write all the data of the index of the certain headers in the

temporarily data holder array (help array). Then we append the content of the help array to

the certain data array.

 If the keyword ‘http’ is not included in the header, the latter will be appended to

the uncertain headers array, and we loop their data with the same index of the header and

write it to the temporarily data holder array. Then we append the content of the help array to

the uncertain data array and set the help array to empty.

Now the data is separated in both arrays. Next, we convert both arrays to

pandas.DataFrame to use the method excel_writer as follow:
certain.to_excel(excel_writer="readyToRun/"+str(getFilename()).replace('c
sv','xlsx'), header=certain_Headers_, index=None, encoding='utf-8')

we run the function of the panda’s library to_exce(a, b, c, d) on the array with the

certain data with saving path in a, the certain headers array in b, setting the index to Nun in

c, with the encoding utf-8 in d. The same is applicable to the uncertain data and headers

arrays.

By testing the performance of the program, we recognized, that the

pandas.DataFrame and the function to_excel take a lot of time to finish. This can be

avoided by returning the data as array to the class Dynamic instead of using

pandas.DataFrame. However, the user must then upload the file each time they want to run

a solution on the same data file. With our implementation, using pandas.DataFrame as

descried above, the user needs to upload the file only one time to create all solutions.

 The improvement we have made here is making the program recognize that the user

is using the same file to generate other solutions. The class readAndSeparate is skipped

entirely and the Dynamic class is run to generate the selected solution.

Class Dynamic

This class is responsible for building and generating the RDF-file based on the in the UI

selected solution for modeling uncertainty. For the implementation we used the following

Appendices
Appendix 5: Main Classes and Functions of SAUN

 107

libraries: JSON, random, pandas, rdflib(Graph, RDF, RDFS, Namespace,

DCTERMS, URIRef, Literal, BNode), re and NumPy. Also, we need to import the class

readAndSeperate.py to be able to access the method for receiving the headers, content,

and uncertain array.

Namespaces(), this function is responsible for reading and generating a list of property-

names, Figure A5. 1 shows the processing steps of this function. These property-names are

written within the property URI at the end after a hashtag ‘#’ or in some cases after a

backslash ‘/’. For reading and saving the property-names we iterate the property URI in

reversed way, and we use both symbols (# and /) to detect when the object property ends. We

save the property-name with the rest of the URI in an array and use the rest of the latter to

get the ontology of it using the function getOntology() with the rest of the URI as input.

The function Namespaces() will return an array containing arrays of three elements that

holds the property-names, namespace-prefix of the corresponding ontology, and the rest of

the property-URI. For example, the property ‘hasMint’ from the Nomisma-Ontology:
['http://nomisma.org/ontology#', 'nmo', hasMint]

Figure A5. 1: Processing steps of the function Namespaces().

To generate the RDF-file based on the selected solution, we must generate an

rdflib.Graph. Bute before we start building the graph, we must prepare the data to be

passed in RDF format. In following we describe the functions we build to generate the

necessary data for building the graph.

getOntology(), this function takes only one parameter in form of a URI, as the example

below, identifies the hash singe ‘#’ and the name of the ontology ‘e.g., nomisma’, and

Appendices
Appendix 5: Main Classes and Functions of SAUN

 108

returns the property (e.g., hasMint comes after the #) together with the namespace prefix for

the ontology ‘nmo’.
http://nomisma.org/ontology#hasMint

The URI starts with the keyword for Hyper Text Transfer Protocol (Secure) ‘http’ or (‘https’).

With this keyword we know that it is a URI of a domain specific ontology. On the right side

of the keyword ‘http’ is a colon ‘:’ followed by the double slash ‘//’, and the ontology name

‘nomisma.org’, as in the example above. For nomisma.org we have two namespace prefixes:

nmo for nomisma.org/ontology, and nm for nomisma.org/id. In other words, we must

exactly assign the prefix identification by typing the content of the link and assign them to a

specific prefix as shown in the following example:
(["nomisma","ontology"],'nmo')

This may not be an efficient way to identify the prefixes since each namespace prefix must

be specified manually, but we could not find a better approach to solve this dynamically.

To check if all keywords (e.g., "nomisma","ontology") exists in the URI, we need

to define a validator in the function getOntology() and set it to False. Then we loop the

list of ontologies that we previously defined (outer loop) and loop each element at the 0 index

of each list (inner loop). If the inner loop ends without breaking means all the keywords are

included in the link, and the second element of the list which is the prefix (nmo in this

example) is returned. If a keyword is not found in the link, then the inner loop will break and

the outer loop will jump to the next element of the list of ontologies.

Note that, for this method to work error-free, the keywords for identifying the prefixes

must be unique for each namespace name and in the correct order. In some cases, the

namespace string may include keywords shared by other namespace strings (URI to

ontology). For example, to differentiate between the two namespace strings below, we can

choose the keywords as following: [rdfs, void] for the first namespace string, and [rdfs, sioc]

for the second.

[rdfs, void] to identify ‘http://rdfs.org/ns/void#’, and

[rdfs, sioc] to identify ‘http://rdfs.org/sioc/services#’

Appendices
Appendix 5: Main Classes and Functions of SAUN

 109

valueLinkSeparator(), with this function we separate the property-value from the data

type. For instance, when the property-value has a defined data type, e.g., integer, decimal,

double, string, etc., then it is entered in a csv/excel table as follows:
1^^http://www.w3.org/2001/XMLSchema#integer

The valueLinkSeperator() function receives the namespace URI and detects whether it

begins with the keywords http or https. When one of these keywords is included, we add each

character after it in a substring until a space is reached, the end of the namespace URI.

Anything that is not part of the namespace URI should be the data value (e.g., numbers or

dates). We strip the rest of the namespace URI of all other characters and put it in an array

with the data value, as follows:
[5.34, 'http://www.w3.org/2001/XMLSchema#decimal']

If the data value were a string, and the word string is included in the namespace URI, then

the function valueLinkSeparator() will run the following code:

return input.split('^^').

This will split the input by the ‘^^’ and return a list with two elements, the string, and the

namespace URI.
['example', 'http://www.w3.org/2001/XMLSchema#string']

And this is easily accessible with index 0 for the data value and index 1 for the namespace

URI.

The function uncertainArray_() is responsible for creating, completing and correcting

the uncertain array. First, we check if the uncertain array, generated in the readAndSeperat

class is empty. In this case we generate a 2D array that matches the length of the headers and

the depth of the data. We fill the array with zeros 0 to indicate that all data is certain. This

step reduces using a conditional statement in the function G(), to check for uncertainty by

each solution.

In case the uncertain array is not empty, then we read it using the

pandas.DataFrame. We also read the headers of the data and the data itself after the

separation. Then, for each data header we check if there exists an uncertain header in the

uncertain array. If there is a match, then we append the uncertain header to a help array. Then

Appendices
Appendix 5: Main Classes and Functions of SAUN

 110

we loop the content of the header of the uncertain array and add them to the help array. If

any field in the uncertain array contains a nan, it means the value here is certain. At the end,

the data array and the uncertain array must have the same dimensions.

To identify an uncertain header, we used the (*) character, e.g.,

hasMint*hasUncertainty. However, this can be replaced with any character or string of

characters and modify the code accordingly. It is also possible to allow a dynamic prefix by

creating an input method in the UI that accepts a character or string as an identifier for

uncertain headers.

G() This function is for generating the RDF/XML file of the uploaded data file

(Excel or CSV). The number of the selected solution is stored in a variable called selectedG.

Based on the selected solution we define the required namespaces. Some Namespaces are

already embedded in the RDF library, like rdf, rdfs, and dcterms, which can be directly

imported for use. Any other namespace (like: nmo, nm, crm, edtfo, amt, etc.,) must

be added manually, otherwise it may lead to an invalid W3C standard document.

First we retrieve the result of the function Namespaces(). This function will return

all the namespaces used in the headers of the input data. Then we define a variable for the

new namespace, NMO in this example for the Nomisma.org-Ontology:
NMO = Namespace('http://nomisma.org/ontology#')

Note that, the namespaces exist in the headers of the data file will be inserted in the RDF

file automatically. With this code line above we define a namespace we need for building

the uncertainty solution. Therefore, for optimization purposes, we only define the

namespaces within the code section of the solution where they are used. For example, we

defined the CRMinf namespace in the code section of Solution 4. This is done using the

Namespace() of rdflib. After defining the namespaces, we append them to the RDF-

Graph as follows:

First, we define a variable G and initialize it as new Graph: G = Graph(). Then we append

the namespaces to the Graph using the function bind:
G.bind('nmo', 'http://nomisma.org/ontology#')

To avoid Duplicates in the namespaces we define a help array called

n_names(namespaces Names) and with a for-loop we check every iteration if the

Appendices
Appendix 5: Main Classes and Functions of SAUN

 111

namespace is included in n_names. If not, we add the namespace to n_names. Finally, we

append the n_names to the Graph G and store the uncertain array from the function

uncertainityArray() in a separate variable. Now we are ready to build the solution,

however, for this part we will focus on building solution two and only explain the main

differences to building the other solutions.

 After retrieving the selected solution, we start looping the data retrieved from the

class readAndSeperat. And for iterating the uncertain array, we define tow variables

X_Achse and Y_Achse. First, we loop every subject i of n, which always has index 0, and

every subject has a row where its property values are stored, and we need to iterate each of

these values in a row. So, we defined a second for-loop and set its range to the length of the

columns m.

Subjects hasProperty_1 hasProperty_2 hasProperty_3 … hasProperty_m

subject_1 property_value property_value property_value . property_value

subject _2

subject _n property_value property_value property_value . property_value

For each inner iteration:

1. Check if a property value in the subject(row) is non or equal empty string. If so, means

that the subject in this column do not have any value. We continue the loop without adding

anything to the graph.

2. The Program will check the value of the respective cell in the uncertain array, if it is set to

0, means that the input value of the data is certain. Otherwise, it is uncertain.

In either way, whether certain or uncertain, three cases must be considered in order to attach

the entry (subject, predicate, object) to the graph in the correct way:

Case 1: If the cell includes the substring http or https and not XMLSchema then the entry

must be added as a URI-Reference to the graph.
G G.add((URIRef(con[0]), eval(n_node[inncon]), URIRef(con[inncon])))

Where G is the Graph, and the function add is to append the entry (subject, predicate, object)

to the graph. With the function URIRef we add the subject con[0] and the property value

Appendices
Appendix 5: Main Classes and Functions of SAUN

 112

con[inncon] as URI references, for example (subject_1, http://nomisma.org/id/comama).

The property value that contains an XMLSchema will be skipped here, because it represents

a datatype and not part of the actual property value.

Subjects http://nomisma.org/ontology#hasMint http://nomisma.org/ontology#hasWidth

subject_1 http://nomisma.org/id/comama 12.3^^ http://www.w3.org/2001/XMLSchema#decimal

The property URI is added using the function eval with n_node[inncon], where inncon is a

variable for iterating each cell of the array.

Case 2: if the cell includes the substring XMLSchema means it includes a property value

with its datatype and it should be included as a literal not as URIRef.
G.add((URIRef(con[0]), eval(n_node[inncon]),
Literal(valueLinkSeperator(con[inncon])[0],
datatype=valueLinkSeperator(con[inncon[1])))

Similar to Case 1, the property is added using the function eval(), the subject and the

property value are added using the function URIRef(). However, the difference here is in

case the property value was a literal (string, numeric or date), with datatype (e.g.,

2.3^^http://www.w3.org/2000/01/rdf-schema#decimal). In this case, we wrap

the property-value with the function valueLinkSeperator(), that returns a list with first

element "property value" and second element "datatype" as follows:
[2.3, 'http://www.w3.org/2000/01/rdf-schema#decimal']

Case 3: If the cell does not contain a URI or a specific data type (plain text, number, date

with characters), it is inserted as a literal in the object entry of the add() function.
G.add((URIRef(con[0]), eval(n_node[inncon]), Literal(con[inncon])))

The above three cases were to build the graph with the certain entries (where the position in

the uncertainty table contains 'nan'). To add the uncertain entries (those with position in the

uncertainty table is not empty), we still need these three cases but with some modifications,

which is, acording to solution 2, using blank-node (BNode) directly in the property path. This

means, that the blank-node will be in the object position (subject-property-BNode) in line 1,

Appendices
Appendix 5: Main Classes and Functions of SAUN

 113

then in the subject position in lines 2 & 3 where it has the property 'hasUncertainty' with

property value 'uncertain_value' in line 2. And the property 'value' with property-

value retrieved from the data array.

Case 1_Uncertain Entries:
1. G.add((URIRef(con[0]), eval(n_node[inncon]), BNode('b' +
 str(nodeCounter))))
2. G.add((BNode('b' + str(nodeCounter)), UN['hasUncertainty'],
 NM['uncertain_value']))
3. G.add((BNode('b' + str(nodeCounter)), RDF['value'],
 URIRef(con[inncon])))
4. nodeCounter += 1

To make each blank-node unique, we define a counter and initialize it with 0 (nodeCounter

in line 4). Then we append the counter value as string to the blank-node's name 'b'. This

returns us 'b0' for the first uncertain triple, 'b1' for the second and so on untel the last

uncertain triple is added.

Cases 2 and 3: Aplaying same proceger as in Case 1_Uncertain Entries (lines 1, 2 & 4). In

Case 2 line 3, we must replace the URIRef() in the object position with Literal() and

use the result of the function valueLinkSeperator(). And in Case 3 line 3, we just add

the value of the cell as it is.

Case 2_ Uncertain Entries:
3. G.add((BNode('b' + str(nodeCounter)), RDF['value'],
 Literal(valueLinkSeperator(con[inncon])[0],
 datatype=valueLinkSeperator(con[inncon])[1])))

Case 3_ Uncertain Entries:
3. G.add((BNode('b' + str(nodeCounter)), RDF['value'],
 Literal(con[inncon])))

After each inner itteration 'inncon' we increase the X_Achse by 1. And after each outer

itteration 'con' (the itteration that loops the subjects), we increase the Y_Achse by 1, and

reset the X_Achse to 0.

Appendices
Appendix 5: Main Classes and Functions of SAUN

 114

 Finally, we define a new directory name ‘rdf’, define a variable ‘G_writer’ and

assign it to the function open(). We use the created directory to save the solution model

under name ‘modelGraphDynamic_G2’ and use the method write ‘w’ with the encoding

to utf-8. In case the encoding is missing, the Graph will not be generated. Before running

the function write, the graph must be serialized to the ‘xml’ format (for a different

serialization like turtle, consider changing/or removing the encoding accordingly).

G_writer = open('rdf/modelGraphDynamic_G2.rdf', 'w', encoding='utf-8')
G_writer.write(G.serialize(format='xml'))

Depending on the size of the input data, after running the write function the graph will take

seconds to several minutes to finish generating.

Class app

This class is responsible for the communication between the View and the Models of the

application. We created a user Interface based on a Web-application. The webpages are

written in HTML and for the communication with the models we use Flask.

To install flask on python run the command pip install Flask. This command will install the

flask library, which we use to import the following classes:

• From flask we import Flask, render_template, request, and send_file. We also use

json library to write data in json format and os library for running system

services/operations.

• Since class ‘app’ is responsible for the user interface and the communication with

other classes, we need to import the class readAndSeperate and Dynamic from the

project to access their functions.

Next, we must create two directories: the first directory must have the name templates and

the second directory must have the name static. In the template directory we store all HTML

files, any other HTML-file outside the template directory will not be accessible. The static

directory will have images, CSS, and the JavaScript files. If any of these files is placed

outside the static directory it will not be accessible from flask nor displayable on the HTML-

pages.

Appendices
Appendix 5: Main Classes and Functions of SAUN

 115

Next, we describe the functions and commands of the class App to make it easy to

understand:

Running Index: First, we must define the flask app, this is done by writing the following

code:
app = Flask(__name__)

The instance app is defined as flask app. To run the Flask server, we need to run the following

command:
if __name__ == '__main__':

app.run()

With these few code lines, we start the Flask server, however, the server will return an error

of ‘Page Not Found’. This because we did not define the index of the web application. To

avoid this, we add the following code:
@app.route('/')
def index(): # put application's code here
 return render_template('index.html')

App Routing means mapping the URL (e.g., the localhost where the server is running) to a

specific function that will handle the logic for that URL. In the above example the server will

run the function index()after server start, because the app.route have the input (‘/’). The

function index()will render the index.html temple and the page will show on the browser.

To be able to control the application we have created an index page, in Figure A5. 2, with

the following control buttons: Solutions, Queries, Graph, Fuseki Control, Ontology Setup

and Gallery. In the following part we will focus on the solutions page only and describe the

view and models functionality.

Solutions (Index.html): On running the app the index page will appear on the browser. In this

page we have 5 menu buttons and a file selection button below. The application is design to

accept Excel and CSV files only. The input file must have the header structure as previously

mentioned under the function Namespaces(). The data file can be selected with ‘Select

Data’. When the data file is selected, the RDF file can be generated by selecting one of the

generate solution buttons (Generate Solution 1, …, Generate Solution 8). The program will

automatically render the file and create the RDF file version of the selected input file. The

data will be saved automatically in a directory (name ‘rdf’).

Appendices
Appendix 5: Main Classes and Functions of SAUN

 116

In some cases, the selected input file is too large and need time to be generated.

Therefore, we created a processing icon, that keep spinning while the application operating.

The index page has, in addition to the solutions, three more columns:

• Visualize, that displays, when hovering, the basic graph representation of each

solution as a thumbnail,

• Description, with few lines describing each solution, and

• Triples, that gives the number of triples of each solution.

Note, the basic graph and the number of triples is of the case with two coins; Coin_1 is

certainly minted in Comama, and for Coin_2 this is uncertain.

Figure A5. 2: The index page of the Application

Note, that the uncertainty headers must contain the symbol ‘*’ with the property name, e.g.,

‘*hasMint’ or uncertain*hasMint. In case of a misspelling or the name of the uncertain header

dose not match the actual name of the property, for example: uncertainty header is

‘uncertain*hasProductionPlace’ and the actual property name is ‘hasMint’, or

‘uncertain*hasClosingDate’, while the actual property name is ‘hasEndDate’.

Appendices
Appendix 5: Main Classes and Functions of SAUN

 117

Function uploadFile(): After selecting the input file and clicking on one of the 8 solutions to

be generated, the process starts and the function uploadFile() will be invoked from the html

flask Jinja.

Form for invoking the function uploadFile():
<form action="{{url_for('uploadFile', file=file)}}" method="post"
enctype="multipart/form-data" id="fm">

Submit Button for the Form:
<input type="submit" class="btn btn-outline-secondary btn-outline-info-
add" name="uploadFile" value="Generate Solution 1" id="s1"
onclick="loading_()"></th>

In the Form we set the action to use Jinja (a method flask uses to display the data) to call the

function uploadFile(). We also use the method post to send the file with http request to the

controller. We also set the value ‘file’ equal the upload file to read it in python. To run the

function uploadFile() we implement an input as button and set its value ‘value’ of it to

‘Generate Solution 1‘. When clicking on the submit button the function uploadFile() in class

App will run and check if the method request is a ‘post’. If yes, we need to identify which

button has been clicked, therefore we use the following code line:

if request.form['uploadFile'] == "Create_solution 1":
 selectedG = 1

In this line of code, we check if the request form with the name ‘uploadFile’ is equal to

‘Create_Solution 1’. If equal, we set the selected value ‘selectedG’ to 1, to generate the first

solution. We repeat this step for each ‘Generate Solution’ button in the solution column, eight

‘if’ statements in total.

 After determining the selected Graph, the file must be read inside Python. To avoid

reading empty input we check first if the requested file is True, then we read the name of the

file and check its extension if excel or csv. Depending on the file extension we build a save

path as string and use the os library to access the path on local machine, then append the

filename to the save path. If the input file is neither csv nor excel the program will not run

and will instead be redirected to the index page.

Appendices
Appendix 5: Main Classes and Functions of SAUN

 118

if "csv" in str(filename_):
 file.save(os.path.join("csv",file.filename))
 current_path+= "csv/"

Next step is to create a script that contains some information to use it the classes

readAndSeperate and Dynamic. The information to store in the script are the number of the

selected graph, the name of the uploaded file, the current path where the file has been saved

and the export-format ‘RDF/XML’ or ‘Turtle’. We pack this information together in a

dictionary in form of key value (“Key”:”value”), then use the following code to write a json

file in a directory.

with open("script/script.json",'w') as script:
 json.dump(dictionary,script)

The script.json is saved to be used for running classes readAndSeperate and Dynamic to

create the solution. Now simply we run class readAndSeperat, then class Dynamic. It is very

important to maintain this order in running class readAndSeperate first, because this class is

responsible for preparing the Data to generate the solution. When this step is finished, we

open the solution as file and store it in variable f_.

f_ = open("rdf/modelGraphDynamic_G"+str(selectedG)+".rdf","r")

Now we need to push the file back to the view. To do this, we use the method GET, which is

responsible for transferring the data from the models to the view. The following return will

carry the return page and the processed data.

return render_template('index.html', image=getImageList(), file=f)

When the process of generating the solution is finished, we run the index page, otherwise the

server will break. To do that we use with the return statement the flask function

render_template and set the return template to index.html. This command will redirect the

index page directly from the template directory. We also push the variable image which

contain the thumbnails of the solutions graphs and the file itself to be displayed in the view.

Appendices
Appendix 5: Main Classes and Functions of SAUN

 119

 In case the use choses to generate more than one solution with the same data, then the

data preparation process in the class readAndSeperate will only run on the first solution

selection. Means, class readAndSeperate will only run if there is a data file been selected, as

shown in Figure A5. 3. For any further solution selection (there is no new selected data file)

the data preparation process will be skipped, and the class Dynamic for generating the

solution will run directly.

Figure A5. 3: In case there is no new data file selected, the data preparation process will be skipped, and the
solution will be generated from the latest uploaded data file.

This step optimizes the run time of the application, for each additional selection can take up

to half the run time as the first selection, especially with large data files. However, it requires

changing the current selected graph in the json script file. Therefore, and before running the

class Dynamic, we must open the script.json file and modify the current selected graph.

Figure A5. 4 illustrates SAUN showing all its Front- and Back-End connections with the
technologies used.

Appendices
Appendix 5: Main Classes and Functions of SAUN

 120

Figure A5. 4: Illustrates the web application SAUN, with its Front- and Back-End connections.

Appendices
Appendix 5: Main Classes and Functions of SAUN

 121

Running SPARQL and Retrieving Data

We implemented two classes (fuseki, queries) to simplify the process of running, stopping,

updating, and getting data from the Fuseki server. For this purpose, we need to import some

libraries like Requests, JSON, Socket, Subprocess, Psutil, PIPE and SPARQLWrapper.

Class fuseki is for managing the data and turning the server on and off. This class contains

the following functions:

Fuseki_control(): This function is responsible for editing the server data. The data is simply

some parameters that we already have defined and used in the class app. The data must be

reachable every time the server starts, therefore, we create a dictionary file and include the

data as follows:
dic = {"datasetName":jsonData['datasetName'], "ip": ""+ip, "port": port,
"dataName": ""+dataName}

Before we update the data script of the Fuseki server, we open the fuseki_data_script.json,

located in the scripts directory, and read all the its data. We use the defined parameters to

update the values in the dictionary. We use the function dump() of the JSON library to

convert the dictionary into json file and finally we overwrite the faseki_data_script.json.

FusekiConnector(): This function is for running, terminating and uploading data to the Fuseki

server. After updating the fuseki_data_script.json we now are able to run the server and

upload data. We open the fuseki_data_script.json again and read the data the using function

json.load(). The function FusekiConnector() has two conditions: first condition is that if the

fuseki server is running and the port 3030 is open, then we turn it off. This can be done by

accessing all open ports in the system using the following command:
Local_connections = psutil.net_connections('inet')
The variable local_connections will carry all the open ports in the system. Since we only are

interested in getting the fuseki server port, which is by default 3030, we loop all ports in the

vaiable local_connections looking for the fuseki port. When the port is found, we retrieve its

Appendices
Appendix 5: Main Classes and Functions of SAUN

 122

PID and call the following function of the psutil library to kill any process opened in this

port:
psutil.Process(port).kill()

At this point we set the function to return false to indicate that the server is currently inactive.

Second condition is that the server is not running. In this case we update the

fuseki_run_script.bat with the new dataset name and run it using the function Popen():
subprocess.Popen('fuseki_run_script.bat')

Popen enable running .bat script using the cmd of the windows machine. The script includes

the command of running the server and updating the data name. It is not recommended to run

the server without creating dataset name, because if we need to use new data (rdf- xml- file)

and run queries it will require restarting the server.

Now we have the fuseki server running on the specified port and the dataset name has been

created. We need to upload the data to the server. This can be done by using the function

subprocess.post(). The function post() takes several arguments, the first argument is the host,

which is in our case is the http://localhost:. Next, we append the port and the dataset name to

the host using the fuseki_data_script.json.
requests.post('http://localhost:'+str(jsonData['port']) + '/' +
str(jsonData['datasetName']), data=data.encode('utf-8'), headers=headers)

In the second argument we set the variable ‘data’ to the data that will be uploaded to the

server. The third argument is where we set the variable ‘headers’ to equal the headers of the

data. Fuseki can accept several types of headers. In our implementation we focus on ‘rdf’,

therefore we use the following encoding to the headers:
{'Content-Type': 'application/rdf+xml;charset=utf-8'}

Function getData(): This function pushes a query to the fuseki server and retrieve its result.

There are three important steps in this function. First step is to connect to the fuseki server

using SPARQLWrapper with setting the host, port, and the dataset name in the connection

path, example:
host = SPARQLWrapper('http://localhost:3030/dataOne')

Appendices
Appendix 5: Main Classes and Functions of SAUN

 123

In the above code line, we use the function SPARQLWrapper to connect to the localhost

running on port 3030 and using the dataset name ‘dataOne’. Now we need to run the query

on the fuseki server, therefore we store the connection in a variable named ‘host’ and use the

following function to set the query for running:
host.setQuery(“Query!”)

Second step of the function getData() is to set the return format of the data retrieved from the

server. Here we recommend using the JSON format, because it is faster at runtime than XML.
host.setReturnFormat(JSON)

In the third step we define a new variable called ‘queryResult’ and run the following

command to retrieve the result in this variable:
queryResult = host.query().convert()

We also use the variable ‘host’ that contain the connection to the fuseki server and the

function query(), which is responsible for running the queries on the server. Finally, we set

the format of the result data to JSON using the function convert().

Now the variable ‘queryResult’ contain the header and the results of the query that we run

on the server. To navigate these, we first specify, whether it is intended to only read the

headers or the result.

For reading the header we use the following code:
for header in queryResult['head']['vars']:

And for the reading the result we simply replace ‘head’ and ‘vars’ with ‘result’ and

‘bindings’ respectively as follows:
for header in data['results']['bindings']:

Function dynamicTest(): the purpose of this function is to measure the runtime of each

query of the eight solutions. Firs we check if the Fuseki server is in running mode, if

otherwise we just call the function fusekiConnector() from the class fuseki, the server will

take about 3 to 5 seconds to start. Therefore we delay the execution of the function

dynamicTest(): for about 5 seconds, to make sure that the Fuseki server has started.

Appendices
Appendix 5: Main Classes and Functions of SAUN

 124

 We created a for-loop (outer loop) that loops each of eight solutions. Inside the outer for-

loop we create another for-loop (middle loop) that loops the five queries we have define in

the class testQuery. Inside the middle for-loop we create another for-loop (inner loop) that

repeat the process of measuring the execution time of each query five times.

To ensure an optimal state of the server and that only one file is uploaded to it, we

turn off the Fuseki server at the end of the outer-loop by calling the function

fusekiConnector() and delaying the function dynamicTest() by 5 seconds as well. This delay

prevents the server from crashing.

Appendices
Appendix 6: SKOS & OWL

 125

Appendix 6: SKOS & OWL

SKOS: Simple Knowledge Organization System

In the previous section, we showed how to create a vocabulary (which also known by

Ontology),

List 2. 2. We mentioned that ontologies are domain specific, meaning they are created to

describe a specific area of knowledge, such as medicine, sports, cultural heritage,

numismatics, etc.. There are many ontology definitions, we chose that by the W3C's

Semantic Web Standard (W3C, Ontology, 2015) and (Yu, 2011):

„Ontologies define complex and formal collections of terms (concepts and relations) used to describe

and represent an area of knowledge (a domain). “

The concepts are the classes and properties used to represent knowledge, and the

relationships between these concepts can be represented as a hierarchical construct. Super-

classes/-properties are at the top of the hierarchy (top-level concepts), and sub-classes/-

properties are finer-level concepts. Therefore, ontologies offer a shared definition of main

concepts and terms for creating PDF documents in a domain. As well as make the domain

knowledge reusable and machine understandable.

 So, how is knowledge expressed in an ontology? Knowledge is expressed by defining

the terms of the ontology, i.e., defining the properties to be used and concepts, property-

values can take. But the question is, how to enable the publication and use of ontologies to

be linked together? for linked data being one of the main goals of the semantic web. The

answer is SKOS “Simple Knowledge Organization System”. What is SKOS? to answer this

lets first see what KOS “Knowledge Organization System” is.

“KOS is a general term that refers, among other things, to a set of elements, often structured

and controlled, that can be used to describe objects, index objects, search collections, etc.”

(Yu, 2011)

KOSs are often used where naming and classification are essential. Examples of KOS

include, among others, taxonomies, thesauri, and classification schemes. Taxonomies refer

Appendices
Appendix 6: SKOS & OWL

 126

to the classification of things or concepts with hierarchical relations. Example, classifying

living things (top-level) into humans, animals, and trees (fine-level) and further classification

into even finer-levels, Table A6. 1.

Table A6. 1: Simple classification of living things.

Living Things

Humans Animals Plants

Male Female Vertebrates Invertebrates Non-flowering Flowering

Male
individuals

Female
individuals

Warm
blood

Cold
blood

Joined
legs

No legs Spore-
baring

Naked
seeds

1seed-
leaf

2seed-
leaves

Thesauri is a form of vocabulary that provides terms to give the ability to take taxonomies as

described above, ordering subjects in a hierarchical way allow for further statements to be

added. Examples of thesaurus-terms; BT broader term, NT narrower term, RT related term,

TT top term, SN scope note, USE preferable term or label, UF inverse of USE. So, applying

those terms on our taxonomy of living things will make for example, “Living things” a top-

term for “Human”, “1 seed leaf” a narrower-term of “Flowering”, and “Vertebrates” has

scope-note “animals with backbone”.

 Taxonomies already use TT, BT, and NT to build the hierarchy, thesauri extend those

terms with BT, RT, USE and UF. Therefore, a thesaurus can be understood as an extension

of a taxonomy, or a taxonomy being a special thesaurus. And comparing the latter with

ontologies, we can say that thesauri are used for organizing knowledge, while ontologies are

used for representing it. Also, the descriptive power of thesauri is much less than that of

ontologies. However, publishing KOSs to the Semantic Web is very beneficial particularly;

to make the schemes be machine readable and optimally useable, to promote interoperability,

and linking similar schemes to form a distributed, heterogeneous global concept scheme.

 After we learned about KOSs, SKOS "Simple Knowledge Organization Systems"

(Yu, 2011), with the word ‘Simple’ to state the simple yet powerful framework it offers.
“The name SKOS was chosen to emphasize the goal of providing a simple yet powerful framework

for expressing knowledge organization systems in a machine-understandable way.” (Miles &

Brickley, 2005)

Appendices
Appendix 6: SKOS & OWL

 127

SKOS is an RDF vocabulary for representing KOSs (taxonomies, thesauri, classification

schemes, and more), and publishing them into the semantic web. SKOS is a W3C standard

developed by the Semantic Web Development Working Group (SWDWG). The URI used to

publish KOSs into the shared web is associated with namespace prefix skos: and is as follows:

 http://www.w3.org/2004/02/skos/core#

OWL: Web Ontology Language

Web Ontology Language (OWL) a recommendation of the W3C for the purpose of defining

ontologies. OWL is like RDFS and builds on top of it, except it adds new constructs for better

expressiveness. This allows more complex class/property relationships to be built and

stronger argumentation to be achieved. The first OWL version was released in 2004 and it

has become a de facto standard for ontology development in many fields. However, due to

ontology engineers and other users’ point of view and requests for enhancements, OWL

underwent optimization processes. The new optimized version become OWL 2 and the initial

version is referred to as OWL 1. A definition of OWL 2 by the W3C’s OWL 2 Web Ontology

Language Primer (W3C, 2012):
“Web Ontology Language (OWL) presented by the W3C for the purpose of defining ontologies. OWL

is like RDFS and builds on top of it, except it adds new constructs for better expressiveness. This

allows more complex class/property relationships to be built and stronger argumentation to be

achieved.”

Even after the release of the updated OWL 2 version, OWL 1 is still used, also some

applications can only understand ontologies created with OWL 1. And so, OWL 1 can be

viewed as a subset of OWL 2, any application that understands OWL 2 can still understand

ontologies built with OWL 1(meaning that, it can create a list of statements based on the

ontology and express them as RDF statements). With that said, from now on when speaking

about information/specifications applicable to both OWL 1 and OWL 2 we will refer to them

as OWL, otherwise, we will specify the version.

 To define classes and properties, OWL provide a set of pre-defined terms with the

following leading URI, which is associated with namespace prefix owl:

 http://www.w3.org/2002/07/owl#

Appendices
Appendix 6: SKOS & OWL

 128

Some of OWL's concepts
Axiom: An OWL axiom represents a statement, a piece of knowledge, and a given OWL

ontology can be viewed as a collection of axioms.

Entity: Each axiom includes a class, a property, and an individual, also called entities. These

entities can sometimes be referred to as categories (for class entity), relation (property entity),

and object (for an individual entity).

Expressions: An expression is the combination of different classes- and properties entities

to create new ones (new classes- and properties entities). With expressions, OWL gains more

expressiveness compared to other ontology languages like RDFS.

IRI Names: OWL 2 provides the opportunity to use IRIs, which stands for Internationalized

Resource Identifiers, for entities (classes, properties, and individuals) names. IRI are the

same as URIs except that they can work with all Unicode characters, while URIs are limited

to the ASCII characters. However, protocols like HTTP only work with UTIs, so, there is a

standard way to convert IRIs to URIs and vice versa.

 OWL specifications provide the possibility to first defined structural specification

then choose one of various syntaxes for sharing ontologies. The Functional-Style syntax is a

syntax for translating the structural specification to other syntaxes like RDF/XML-,

Manchester-, and OWL/XML Syntax (Yu, 2011).

OWL’s Classes and Properties

The root-class of OWL is owl:thing, which is also the base class of rdfs:Resource, and

owl:class is a subclass of rdfs:class. Figure A6. 1 summarizes the relationship between these

top classes.

Figure A6. 1: The relationship between RDFS’s and OWL’s top classes.

Previously, in the ontology we created using RDFS, we have defined property_1 with

domain= Class_1 and range= Class_2. We also defined Class_3 as a subclass of Class_1,

meaning that it inherits property_1. Now, suppose we have defined a new class Class_4 being

Appendices
Appendix 6: SKOS & OWL

 129

a subclass of Class_2. With this, Class_4 inherits property_1 as well. This in fact will make

statements like “instance of Class_1/ or Class_3 has relation property_1 to an instance of

Class_2/ or Class_4” is possible. In case we would like to prevent this and perform more

restrictions, allowing, as an example, for only this statement “instance of Class_3 has relation

property_1 to an instance of Class_4” be valid, we can use owl:Restriction as shown in List

A6. 1.

List A6. 1: Using owl:Class to define Class_3 being a subclass of Class_1, using
owl:Restriction to specify that instances of Class_3 can only be associated to instance of
Class_4 when using property_1.

1. <owl:Class rdf:about="&myVocab;Class_3">
2. <rdfs:subClassOf rdf:resource="&myVocab;Class_1"/>
3. <rdfs:subClassOf>
4. <owl:Restriction>
5. <owl:onProperty rdf:resource="&myVocab;property_1"/>
6. <owl:allValuesFrom rdf:resource="&myVocab;Class_4"/>
7. </owl:Restriction>
8. </rdfs:subClassOf>
9. </owl:Class>

Lines 1-9 define Class_3 as an owl:Class, being an rdfs:subClassOf Class_1 (line 2), and has

restrictions (ab line 4). In line 3 we create an empty node to add restriction to Class_3. Lines

4-7 uses owl:Restriction to describe an anonymous class, which is defined by adding

restriction on some property using owl:onProperty (line 5) to specify the targeted property.

To add constraints on the property itself we have two options; owl: value constraints and

cardinality constraints. With value constraint we specify the range of the property (as we did

in line 6, owl:allValuesFrom Class_4), the cardinality constraint restricts the number of

values the property can take. Figure A6. 2 shows a graph representation of List A6. 1.

Figure A6. 2: graph representation of List (), adding restrictions allowing instances of Class_3 using property_1
to only be associated to an instance of Class_4.

Appendices
Appendix 6: SKOS & OWL

 130

Another OWL term to add value constraints owl:someValuesFrom. This, in contrast to

owl:allValuesFrom, allows that property_1 to have instances from other classes as value,

however, with the condition that at least one of the value an instance of the specified class,

e.g., Class_4, as shown in List A6. 2 line 6.

List A6. 2: Restriction using value constraints with owl:someValuesFrom.

4. <owl:Restriction>
5. <owl:onProperty rdf:resource="&myVocab;property_1"/>
6. <owl:someValuesFrom rdf:resource="&myVocab;Class_4"/>
7. </owl:Restriction>

We will stop at this point with OWL, as we gave a simple idea of what it is and how it allows

applying more restrictions on classes and properties. We would like to suggest this work (Yu,

2011) for any interests in learning more about OWL.

