

The NativeScript Book

building mobile apps with skills you already have

MIKE BRANSTEIN
NICK BRANSTEIN

 Branstein / The NativeScript Book ii

©2018 by The Brosteins. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form

or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the

publisher.

NativeScript® is a registered trademark owned by Progress Software Corporation and is only used for

reference. Progress Software Corporation does not sponsor or endorse this book.

Development editor: Toni Arritola

Technical editor: TJ VanToll

Technical reviewer: Alain Couniot

Cover designer: David Bjarnson

Reference drawings: David Bjarnson

 Branstein / The NativeScript Book iii

brief contents

PART 1: THE BASICS

 1 Why NativeScript

 2 Your first app

 3 Anatomy of a NativeScript app

PART 2: STRUCTURING YOUR APP

 4 Pages and navigation

 5 Understanding the basics of app layouts

 6 Using advanced layouts

 7 Styling NativeScript apps

PART 3: REFINING YOUR APP

 8 Working with data

 9 Native hardware

 10 Creating professional UIs with themes

 11 Refining the user experience

 12 Deploying an Android app

 13 Preparing an iOS app for distribution

 14 iOS security and building your app with Xcode

PART 4: ANGULAR AND NATIVESCRIPT

 15 Creating a NativeScript app with Angular

 16 Using Angular components and routing

 Branstein / The NativeScript Book iv

 17 Angular data binding and services

APPENDIX

 A Android emulator tips

 B Creating custom UI controls

 C NativeScript CLI Quick Reference

 D NativeScript Conventions

 Branstein / The NativeScript Book v

contents
Part 1: The Basics ... 1

Why NativeScript .. 2
1.1 Introducing NativeScript .. 3
1.2 What you’ll learn in this book.. 5
1.3 What NativeScript means to mobile development ... 5
1.4 How NativeScript works .. 8
1.5 Summary .. 10

Your first app ... 11
2.1 Hello world with the NativeScript CLI .. 12
2.2 Hello World with NativeScript Sidekick ... 20
2.3 Hello World with NativeScript Playground ... 28
2.4 NativeScript apps ... 38
2.5 Establishing your development workflow ... 41
2.6 Quick reference .. 44
2.7 Summary .. 45
2.8 Exercise .. 45
2.9 Solutions .. 45

Part 2: Structuring Your App ... 47
Anatomy of a NativeScript app.. 48

3.1 Exploring the structure of a NativeScript app .. 48
3.2 Understanding app startup ... 60
3.3 Style guide and app organization ... 63
3.4 Summary .. 66
3.5 Exercise .. 66
3.6 Solutions .. 66

Pages and navigation ... 67
4.1 Creating a multi-page app .. 68
4.2 Creating another app page ... 75
4.3 Navigating between app pages ... 78
4.4 Summary .. 84
4.5 Exercise .. 85
4.6 Solutions .. 85

Understanding the basics of app layouts .. 86
5.1 Understanding NativeScript layouts .. 86
5.2 Stack Layout .. 90
5.3 Summary .. 105

 Branstein / The NativeScript Book vi

5.4 Exercise .. 105
5.5 Solutions .. 106

Using advanced layouts ... 108
6.1 Introducing the grid layout ... 108
6.2 Adding content to a grid layout.. 110
6.3 Controlling grid layout rows and columns ... 118
6.4 Summary .. 127
6.5 Exercise .. 127
6.6 Solutions .. 127

Styling NativeScript apps .. 129
7.1 Using cascading style sheets .. 130
7.2 Adding images to an app .. 143
7.3 Summary .. 159
7.4 Exercises .. 159
7.5 Solutions .. 159

Part 3: Refining Your App .. 161
Working with data ... 162

8.1 Databinding .. 164
8.2 Observables in action ... 166
8.3 Observable arrays .. 184
8.4 Action bar .. 190
8.5 Summary .. 193
8.6 Exercise .. 194
8.7 Solutions .. 194

Native hardware ... 195
9.1 The file system module .. 196
9.2 Camera ... 208
9.3 Using GPS and location services ... 222
9.4 Summary .. 227
9.5 Exercise .. 227
9.6 Solutions .. 227

Creating professional UIs with themes .. 229
10.1 Themes ... 229
10.2 Using text classes, alignment, and padding ... 232
10.3 Styling buttons ... 234
10.4 Styling list views .. 236
10.5 Working with images ... 238
10.6 Styling data-entry forms .. 239
10.7 Summary .. 245
10.8 Exercises .. 245
10.9 Solutions .. 245

Refining user experience ... 247
11.1 Building professional UIs with modals .. 247
11.2 Adding tablet support to an app ... 261
11.3 Refining the tablet-specific user experience .. 279

 Branstein / The NativeScript Book vii

11.4 Summary .. 284
11.5 Exercises .. 285
11.6 Solutions .. 285

Deploying an Android app ... 286
12.1 Customizing Android apps with the App_Resources folder .. 286
12.2 AndroidManifest.xml customizations .. 289
12.3 Launch Screens .. 297
12.4 Building your app .. 308
12.5 Summary .. 311
12.6 Exercise .. 312
12.7 Solutions .. 312

Preparing an iOS app for distribution .. 313
13.1 Transforming your app code into an iOS app .. 314
13.2 Finalizing your app .. 316
13.3 Summary .. 330
13.4 Exercises .. 330
13.5 Solutions .. 330

iOS security and building your app with Xcode .. 331
14.1 Building your app .. 331
14.2 Summary .. 361
14.3 Exercises .. 362
14.4 Solutions .. 362

Part 4: Angular and NativeScript ... 363
Creating a NativeScript App with Angular .. 364

15.1 Why Angular.. 365
15.2 Using NativeScript with Angular to recreate the Pet Scrapbook app 369
15.3 TypeScript .. 373
15.4 NativeScript Angular integration ... 375
15.5 Understanding NativeScript-with-Angular app startup .. 375
15.6 Summary .. 380
15.7 Exercise .. 380
15.8 Solutions .. 380

Using Angular components and routing .. 382
16.1 Creating static components .. 382
16.2 Demystifying how the Home component was loaded .. 392
16.3 Navigating between components with routing ... 398
16.4 Summary .. 403
16.5 Exercise .. 403
16.6 Solutions .. 403

Angular databinding and services .. 407
17.1 Databinding with Angular .. 407
17.2 Creating and using services ... 412
17.3 Databinding events .. 417
17.4 Advanced databinding ... 427
17.5 Loading components as modal dialogs .. 431

 Branstein / The NativeScript Book viii

17.6 Summary .. 442
17.7 Exercise .. 443
17.8 Solutions .. 443

Appendix ... 445
Android emulator tips .. 446

A.1 Emulator speed .. 446
A.2 Using Genymotion ... 446

NativeScript CLI quick reference .. 447
B.1 Creating apps ... 447
B.2 Adding the Android and iOS platforms ... 448
B.3 Building apps ... 448
B.4 Preparing and eploying apps .. 449

NativeScript conventions ... 451
C.1 Understanding NativeScript conventions ... 451

 Branstein / The NativeScript Book ix

get the code

You can find the code in this book online on Github and the NativeScript Playground.

Visit https://github.com/mikebranstein/TheNativeScriptBook to get the code from each chapter. If you

want to try the code on your mobile device immediately, checkout the README.md file in our Github repo

for links to each code sample in the NativeScript Playground.

 Branstein / The NativeScript Book x

preface

Finding the courage to take that first step and dive into something new like writing mobile apps can be

intimidating and overwhelming. We understand, because that was us. We had so many questions and

anxiety about where to start and felt there was a huge wall to climb. Should we write native apps with

Objective-C, Swift, or Java? If not, is Cordova or Xamarin the right choice? If we pick Cordova, will our

apps be slow? How cross-platform is Xamarin really? Should I get a Mac so I can build iOS apps, or just

stick with Android (for now)?

After a few years, our team had played the field: we decided to go cross-platform and had built Cordova

and Xamarin apps. But, there was something missing. Our Cordova apps felt clunky and slow. Xamarin

was expensive, and we found ourselves writing a lot of platform-specific code for Android and iOS. We

could settle for Cordova or Xamarin, but really wanted a cross-platform approach that was inexpensive,

performant, and allowed us to reuse some (or all) of our web development skills.

Then, in January 2015, we were introduced to NativeScript. It was early in its life, and the beta hadn’t

been opened to the public yet. We met with the NativeScript development team and Valentin (Valio)

Stoychev walked us through NativeScript, start to finish. We were skeptical at first. Wouldn’t you be?

NativeScript promised a lot: native UI, near-native performance, full access to the underlying native APIs,

and it was open source.

That summer, Nick, our co-worker Justin Tindle, and I hosted the Summer of NativeScript: a 3-session

meetup group aimed at introducing others to NativeScript. About a dozen people showed up for the

meetup each session, and we learned a lot about NativeScript together. We were surprised how easy it

was to get started with NativeScript. The love affair had started.

Over the following months, I jumped headfirst into NativeScript. On week nights, I found myself writing

apps for my boys, Charlie and Wesley. The apps were simple, but they let us enhance our creative play.

One of my favorites was the Pokémon reference manual. Another favorite was the soundboard, where we

could make their tablets say silly sayings like, "Watch out! There’s a bigfoot behind you," and, "There’s a

yeti on your head." The soundboard is especially notable because the boys could invent a ridiculous

phrase, and I could quickly add it to the app.

Later in the fall of 2015, our friend, Ed Charbeneau, introduced us to TJ VanToll, Jen Looper, and the

rest of the Progress DevRel team. A NativeScript community was growing, and there was some interest

in a book. After a few Sunday mornings at Starbucks, The NativeScript Book was born.

Our original concept was simple. The NativeScript Book: how to write professional mobile apps with

JavaScript, CSS, and XML. 12 chapters and we’d be done. But then, something happened, and it happened

fast. Angular 2 (which we now know as Angular). In October 2016, (when we were about half-way through

the book), Angular 2 was released, and so did a new way to write NativeScript apps: NativeScript with

Angular. This was huge. Bigger than huge. Gargantuan. The most popular JavaScript front-end framework

could be used to write native mobile apps.

At first, we were reluctant to include Angular in our book, because the book was about NativeScript,

not Angular. Even more important, we’d seen new NativeScript developers try to dive right into

 Branstein / The NativeScript Book xi

NativeScript with Angular, and it was confusing and hard to understand which part of the app was

NativeScript and which part was Angular.

Over time, we changed our minds. But, let’s set the record straight: we didn’t cave to the pressure.

We found a way to teach the differences between vanilla NativeScript and NativeScript with Angular. An

updated version of The NativeScript Book was born, and an additional 5 chapters were added: three on

Angular and two because I kept wanting to add more content (at least that’s what Nick says).

That brings us to the present—17 chapters, covering vanilla NativeScript (without Angular) and

NativeScript with Angular. We’re proud and feel The NativeScript Book is a well-written book about a

compelling technology. We also think you’ll enjoy reading and learning how to build mobile apps with

NativeScript. And, if your experience with NativeScript is like ours, you won’t stop using it when you’re

finished with this book.

Thank you and enjoy!

 Branstein / The NativeScript Book xii

acknowledgements

Before embarking on this journey we’ve called The NativeScript Book, we talked to a lot of authors. Every

one of them said writing a book takes a lot of time and dedication. It’s hard to place yourself in their shoes

and visualize how much work constitutes a lot. Now we know. This book is the single most consistent and

long-term project we’ve worked on together, and we owe it to each other to thank one another. But, there

are so many more people we’d like to thank for helping us on this journey.

We’d like to acknowledge our development editor, Toni Arritola. Thank you for spending your Sunday

afternoons with us. Thank you for talking us off the cliff when we disagreed and thank you for talking Mike

down when he insisted upon throwing Nick off the cliff. It’s amazing how we could spend hours working

on making a paragraph sound just right, but then you’d come along, switch the order of a few words, and

make it sounds a million times better. We’d also like to thank our employer, KiZAN Technologies, for

supporting us.

Another huge thank you goes to TJ VanToll, our technical editor. Even though your day job is

NativeScript, you still found time nights and weekends for The NativeScript Book. You sent us down the

right path when we couldn’t decide which way to go. The support and encouragement you gave us kept

us going. We also want to recognize all our friends at Progress Software: Ed Charbeneau (who first

suggested we talk about a book), Jen Looper (for building an amazing NativeScript community), Dan

Wilson (for giving us a voice and platform to evangelize NativeScript), and the rest of the DevRel team.

Without the support of Progress, we couldn’t have made this happen.

A special thank you is reserved for the NativeScript product team, who have built this open source,

cross-platform framework – from scratch. NativeScript is something special. You know it, and the

community knows it. Without your dedication, careful planning, and expertise, none of this would have

been possible. We applaud and thank you.

We’d also like to thank the reviewers who took the time to read our book throughout its lifecycle. You

provided us with invaluable feedback. Thank you to our co-workers, Justin Tindle, Jason Dailey, and

Joshua Martin, who helped us understand how other developers see NativeScript, and steer us in the right

direction. Special thanks to Alain Couniot, technical proofreader, for his careful review of the code one

last time, shortly before we published.

Hi, it’s Mike. I’d like to extend a thank you to my wife, Abigail, and two sons, Charlie and Wesley.

Yours was the biggest sacrifice of all. You gave up a lot of late nights, early mornings, and weekend

afternoons so I could do this. Your encouragement helped me succeed. I love you.

Nick here, I’d like to thank my wonderful wife Jen for your continuous support whether it be through

cookies, coffee, or words of encouragement, all of which helped me succeed. I love you. I’d also like to

thank my brother Mike for putting up with me throughout the entire book writing process and special

thanks for pushing me to step out of my comfort zone and write a book.

 Branstein / The NativeScript Book xiii

 Branstein / The NativeScript Book xiv

about this book

NativeScript in Action was written to show you how it can be easy to get started with mobile app

development using NativeScript, an open source framework for writing native mobile apps with Angular,

TypeScript, or JavaScript. The first half of the book teaches you about the core of NativeScript apps: using

JavaScript, XML, and CSS to build native, cross-platform apps without web views. In the second half,

you’ll learn how to build NativeScript apps with Angular and TypeScript.

It’s a journey on learning how to write mobile apps with NativeScript. Finding the courage to take that

first step and dive into something new like mobile apps can be intimidating and overwhelming. With

NativeScript in Action at your side, you’ll be able to walk away and build your first app, even if you’re new

to mobile app development.

Who should read this book

NativeScript in Action is for developers with familiarity with JavaScript, CSS, and XML. You don’t need to

be an expert in these technologies or even consider yourself an intermediate developer to become a

mobile developer with NativeScript. So, if you’ve been developer for one to two years, you’ll find that

NativeScript will be easy to understand and jump right into.

How this book is organized

This book is presented in four parts, with 17 chapters.

In part 1, you’ll learn the basics of NativeScript.

▪ Chapter 1 introduces you to NativeScript, describing what it is, why it’s important, and why it’s

different from other mobile app development frameworks. It concludes with a brief overview of

how a NativeScript app works.

▪ Chapter 2 goes deeper into how NativeScript apps run on mobile devices using a JavaScript virtual

machine. You’ll also learn how to create, compile, and run an app using the NativeScript command

line interface (CLI).

▪ Chapter 3 wraps up part 1 and explores the structure of a NativeScript app. You’ll learn about file

and folder structure, various file-naming conventions, and how to organize your NativeScript apps.

Part 2 covers the essentials of creating and navigating between app pages. Throughout this part, we

begin your introduction to various NativeScript UI elements used to organize pages and display text and

images to users.

▪ Chapter 4 uses HTML applications as a point of reference to describe how NativeScript apps use

the concepts of pages and navigation between pages. You’ll also learn how to create pages and

navigate between them.

 Branstein / The NativeScript Book xv

▪ Chapter 5 describes the most widely used way to organize UI elements on a page.

▪ Chapter 6 builds on the previous chapter and introduces various other ways to organize UI

elements.

▪ Chapter 7 closes out part 2 with an overview of styling NativeScript apps with CSS. You’ll also learn

how to integrate images into Android and iOS apps that target various screen resolutions and DPIs.

In part 3, you’ll develop the Pet Scrapbook, a fully functional app that stores information and images

of pets in a scrapbook.

▪ Chapter 8 introduces you to the Pet Scrapbook, the concept of dynamic data and data-driven UIs.

You’ll learn how to use data binding to build data-driven apps that can affect both text and UI

elements.

▪ Chapter 9 teaches you how to use native mobile device hardware like the file system, camera, and

GPS in NativeScript apps.

▪ Chapter 10 describes how to make NativeScript apps more professional and visually appealing by

using themes. You’ll learn how to leverage the NativeScript theme plugin to style the Pet Scrapbook

UI to look consistent across Android and iOS devices.

▪ Chapter 11 continues the discussion of professional apps by introducing modal dialogs. You’ll also

learn how to quickly add tablet support to the Pet Scrapbook.

▪ Chapter 12 covers how to prepare NativeScript apps for the Google Play store. You’ll learn about

Android-specific settings, app icons, splash screens, and creating an Android app that is ready for

store deployment.

▪ Chapter 13 mirrors chapter 12 but focuses on preparing NativeScript apps for the iTunes store.

Preparing iOS apps is more involved than Android, so this chapter begins the discussion by teaching

you how to create iOS-specific app icons, launch screens, and use the CLI to create an Xcode

project.

▪ Chapter 14 finishes the discussion of preparing apps for the iTunes store, explaining iOS app

security, and how to use Xcode to build and upload a NativeScript app to the store.

The end of part 3 marks the final version of the Pet Scrapbook, a complete NativeScript app, ready for

store deployment and written using JavaScript, CSS, and XML. In part 4, we build the same NativeScript

app, but using Angular and TypeScript.

▪ Chapter 15 introduces you to Angular and why you may want to create NativeScript apps with

Angular. You’ll build your first NativeScript-with-Angular app and learn how it’s structure differs

from a traditional NativeScript app.

▪ Chapter 16 introduces Angular components, which represent pages in a NativeScript-with-Angular

app. You’ll learn how to create components and navigate between them using routing.

▪ Chapter 17 covers using Angular data-binding syntax to create dynamic UIs. You’ll also learn how

to use Angular service classes and navigate between components using modal dialogs.

Generally, we recommend reading the book from start to finish. Parts 1 through 3 help you learn and

understand what NativeScript is and how it works. Part 4 builds on these concepts, and it’s helpful to have

 Branstein / The NativeScript Book xvi

a solid understanding of NativeScript and Angular (separately) before jumping into NativeScript and

Angular together.

What’s changed in this edition

This is the second edition of The NativeScript Book and a lot has changed! Since we wrote the book in

2017, NativeScript has continued to grow (it’s now on version 4.1), new tools and resources used to build

NativeScript apps have matured (NativeScript Sidekick and Playground), Angular support in NativeScript

has matured, and support for Vue.js was announced and is now live! In short, the progress is astounding.

Congratulations and thank you to all that are and were involved in these major milestones.

With the updates to NativeScript (and especially the Playground), we knew the book needed some

TLC. So, we’re happy to present you with updated code supporting NativeScript 4.1 – that’s HUGE! But,

we’re not stopping there. We’ve ensured every bit of code can be run on your personal computer using

the NativeScript CLI, it works with NativeScript Sidekick, and it runs in the Playground! We hope you

enjoy these updates.

Alas, some things got left behind in this edition. Most notably, we removed an appendix that discussed

how to create custom components for plain NativeScript with JavaScript apps. Although the appendix was

incredibly detailed, the NativeScript community has moved on. If you’re doing NativeScript, you’re doing

NativeScript-with-Angular or NativeScript-with-Vue. We don’t think you’ll miss the content, but if you do,

let us know and we’ll hook you up.

About the code

This book contains many examples of source code, both in numbered listings and inline with normal text.

In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary

text. Sometimes code is also in bold to highlight code that has changed from previous steps in the chapter,

such as when a new feature adds to an existing line of code.

In many cases, the original source code has been reformatted; we’ve added line breaks and reworked

indentation to accommodate the available page space in the book. In rare cases, even this was not

enough, and listings include line-continuation markers (➥). Additionally, comments in the source code

have often been removed from the listings when the code is described in the text. Code annotations

accompany many of the listings, highlighting important concepts.

Source code for the examples in this book is available for download from Mike’s GitHub repository at

https://github.com/mikebranstein/TheNativeScriptBook.

Other online resources

We wrote a lot of code for NativeScript in Action, and every listing, screenshot, icon, and app is online.

You can follow along with each chapter in Mike’s GitHub repository at

https://github.com/mikebranstein/TheNativeScriptBook.

 Branstein / The NativeScript Book xvii

about the authors

Mike and Nick Branstein are brothers and are collectively known as the Brosteins in the development

community. They are .NET and JavaScript developers, consultants, and technology evangelists. They blog

about technology, architecture and development for the cloud, development tools and techniques,

application lifecycle management, gaming, the web, and team building at their blog https://brosteins.com.

 Branstein / The NativeScript Book xviii

dedication

Mike dedicates this book to his wife Abby and sons, Charlie and Wesley. Together, we’ve created some

super cool apps with NativeScript. I love your creativity and goofiness. And, don’t forget to watch out:

there’s a bigfoot standing behind you!

Nick dedicates this book to:

▪ His wife Jen for being the best wife there is

▪ His parents Sue Ann and Gary for helping mold me into the person I am today

▪ Pittens and Nibbles, may your journeys on the rainbow bridge be wondrous

Part 1:
The Basics

 Branstein / The NativeScript Book 2

1
Why NativeScript

This chapter covers

▪ What is NativeScript

▪ What NativeScript means to the mobile development world

▪ How NativeScript works

In the early days of mobile apps (pre-iPhone), not much emphasis was placed on methodologies for writing

code once and deploying it to multiple platforms. Developers just wanted to get an app out to the Apple

or Google Play stores as fast as possible. And if that meant their app didn’t support both platforms, that

was a reasonable sacrifice.

Fast forward to today: the mobile world is continually changing, making it more and more difficult to

keep up with the latest devices. As developers create app, they need to reach the largest audience

possible: focusing on a single platform just isn’t an option anymore. Apps need to be available across

platforms and devices. To keep up with ever-changing environment, developers are placing a premium

on any technology that enables them to simplify the mobile app development process.

Today, developers have various choices for writing mobile apps that can target multiple platforms from

a single code base. NativeScript is one of those choices, but it isn’t the only one. You may have heard of

others like PhoneGap, Xamarin, and React Native. Each of these frameworks is capable of writing code

once and deploying it to both Android and iOS, but we’re not here to debate the merits of one framework

over another. Instead, we want you to learn how to write professional cross-platform mobile apps using

skills you likely already have. If you’re a beginner who knows the basics of writing web apps with HTML,

JavaScript, and CSS, or seasoned expert, you can write a mobile app with NativeScript.

As you read this book, we’ll show you how to write cross-platform apps from a single code base using

the structured approach that NativeScript offers. When you’re finished, you’ll have the skills to create

your own mobile apps for Android and iOS with your choice of technologies: HTML, JavaScript, and CSS

or Angular, TypeScript, and CSS.

 Branstein / The NativeScript Book 3

NOTE If you’re not familiar with Angular or TypeScript, that’s ok. The last 3 chapters of this book are

dedicated to teaching you what they are and how they can be used to create mobile apps.

We’ve worked with a lot of developers learning NativeScript for the first time, and many of them want

to jump straight into NativeScript with Angular. If that sounds just like you, go for it, but proceed with

caution. If you’re not familiar with Angular, learning both NativeScript and Angular at the same time can

be confusing because the lines between what’s NativeScript and what’s Angular will be blurry. So, we

recommend you learn about plain-old-vanilla NativeScript first. Follow along with our exercises in the first

3 parts of this book, then jump into NativeScript with Angular.

Before we get ahead of ourselves, let’s back up and look at NativeScript in more detail.

1.1 Introducing NativeScript

NativeScript is an open-source framework for building cross-platform mobile apps for iOS and Android,

created and maintained by Telerik. NativeScript differs from other mobile frameworks in many ways, the

largest being that it is a cross-platform framework that can create native mobile apps with a single code

base. Additionally, NativeScript offers a lot of features that make it easy to get started and leverage skills

you may already have:

▪ Leverages your existing knowledge of HTML, JavaScript, and CSS (you don’t have to know Objective

C, Swift, or Java)

▪ All your code is written once

▪ Access to native platform APIs for Android and iOS

▪ An opinionated way to create apps that helps structure your code base

▪ Natively integrates with Angular (but doesn’t have to)

Sometimes learning a new language is a barrier to entry into a new world. When creating NativeScript

apps, you’ll leverage your existing knowledge of HTML applications so you can quickly create an app

targeting multiple platforms (Android and iOS). Because you already have these skills, you’ll find that

creating NativeScript apps can be quick. And even better, you won’t have to learn Objective C, Swift, or

Java.

1.1.1 How NativeScript apps are written

NativeScript apps are written in a combination of JavaScript, XML, and CSS, as shown in figure 1.1.

 Branstein / The NativeScript Book 4

Figure 1.1 JavaScript, CSS, and XML combine to create a NativeScript app.

When you write NativeScript apps, your code has 3 parts: JavaScript, XML, and CSS. The JavaScript

component runs business logic, accesses data, or controls the flow of the app. The XML portion defines

the user interface (UI), and CSS is used to style the UI, much like an HTML application.

The structure and code of NativeScript apps closely resemble HTML applications, but this is where the

similarities end. NativeScript is unique in the cross-platform mobile app space because it allows you to

write your UI (XML) code once. When run, the UI code renders native UI elements in the app. For example,

on iOS UI elements are rendered as native iOS buttons, dropdowns, lists, and so on. Likewise, on Android

UI elements are rendered as native Android components.

Figure 2.1 shows the native rendering of an iOS button, written in NativeScript.

Figure 1.2 A native button in an iOS app written in NativeScript.

You’ll notice that is looks just like an iOS button. And, that’s because it is an iOS button. All NativeScript

UI elements are native iOS and Android UI elements.

In other cross-platform frameworks, you may have to spend time writing specific view code for specific

platforms. But, the ability to write your UI code once and have it render as native UI components is a

feature that sets NativeScript apart from other frameworks.

Another unique feature of NativeScript is that you have access to Native APIs.

 Branstein / The NativeScript Book 5

NOTE Yes, several of the previously mentioned frameworks also let you access Native APIs. But, as

you’ll learn throughout this book, the way NativeScript runs and accesses the Native APIs of Android

and iOS is much different. Even though you write NativeScript code in JavaScript, you have access to

every native API function, feature, and hardware component device your app runs on.

As you continue to learn about NativeScript, you’ll see how NativeScript executes all your code as

native code running on the device. This allows you to take advantage of the performance gains of writing

native code without having to learn or write Objective C, Swift, or Java!

Now that you have a high-level familiarity with NativeScript, let’s look at what you’ll learn in this book.

1.2 What you’ll learn in this book

At this point, you’re beginning to get an idea of the technologies you’ll use to write NativeScript apps

(HTML, JavaScript, and CSS). Not a whole lot, right? If you already have these skills, you may be

wondering why you should keep reading. In this book, we’ll teach you how to take these skills and apply

them to create professional-looking mobile apps.

What do we mean by professional? Professional can mean different things to different people. You

might think just showing up to work on time is professional, while your friend may think professional

means wearing a suit to an interview.

NOTE To us, professional means creating a single, maintainable code base for your app so it can

continue to grow over time.

Creating a professional app is also about using NativeScript’s features so your app looks and feels

native on the platform that it is running on.

While you’re learning to create professional apps, you’ll discover how NativeScript apps are structured

and how to access native hardware components such as the camera, GPS, and location services.

But, before we jump straight into code, it’s important that we put NativeScript into perspective, so you

understand how it works.

1.3 What NativeScript means to mobile development

Think back 15 years (if you can), when you were carrying around a Windows 6 mobile phone or geeking-

out over the latest Samsung Blackjack: this was before Android and iOS. There were just fewer platforms

and devices back then. Today, new devices come out monthly. And because of this increasing rate and

variety, the development community has begun to look for more efficient ways to write mobile apps that

target all the platforms.

1.3.1 Different types of mobile apps

Mobile apps fall into one of four major categories: native, hybrid, cross compiled, and just-in-time (JIT)

compiled (table 1.1).

Table 1.1 Different mobile app types and their popular frameworks

 Branstein / The NativeScript Book 6

Mobile App Type Framework

native Android, iOS

hybrid PhoneGap/Cordova

cross compiled Xamarin

JIT compiled NativeScript

DEFINITION Just-in-time (JIT) compiled apps are apps that are compiled at runtime versus being

compiled before the execution of the app. For example, in a just-in-time app, your source code is not

compiled to native machine code until the absolute last minute, or immediately prior to executing each

statement.

Excluding native apps, the other three app types in table 1.1 have the same goal: write your app code

once and deploy it to multiple platforms (which is what people mean when they say cross-platform).

Even though the cross-platform frameworks listed above achieve similar results, they do so in a variety

of ways. Figure 1.3 shows the differences between the different types of mobile apps and how they run

on devices.

Figure 1.3 How types of mobile apps run on a device

In figure 1.3, you can see how each type of mobile app uses a different mechanism to run on a mobile

device. Hybrid mobile apps are essentially webpages run inside of a web browser. Cross compiled apps

are compiled into, which transforms them into a native app. Lastly, JIT compiled apps (like NativeScript),

 Branstein / The NativeScript Book 7

run inside of virtual machine. For NativeScript apps, your app code runs inside of a JavaScript virtual

machine.

DEFINITION A JavaScript virtual machine is a piece of software that runs JavaScript code.

If you’re a .NET or Java developer, you’re already familiar with running code in a virtual machine

because both .NET and Java run code in a virtualized manner. The way NativeScript works is similar.

1.3.2 Why NativeScript is important

Besides JIT compilation, NativeScript has a variety of other differences when compared with other mobile

app frameworks. We think the most significant difference is your ability to write truly native apps from a

single code base and deploy it to both Android and iOS with no changes.

We’ve worked with other mobile app frameworks in the past, and in our opinion, NativeScript stands

apart. In other frameworks, we’ve had to write a lot of shim code. This shim code acts like a piece of wood

that’s used to level a stove in your kitchen or to help frame a doorway. To continue the analogy, imagine

you’re installing a new door and door frame. Most doors are built to a standard width, height, and depth,

and they fit almost right. But in all cases, you add a little shim here and a little shim there to get it to fit

just right. This is what it’s like when writing code in other frameworks: you add a bit of UI code to make

a button display just right in the Android version of the app, and a little more UI code to make it look just

right on iOS.

NOTE Hold on, we’re not trying to paint the picture that NativeScript is perfect, because nothing is.

But, NativeScript is compelling, and in our opinion, requires the least number of shims. In fact, the

shims are so limited, you may never come across them when you’re writing a line-of-business app. And

when you do run across them, there’s an extensive community of NativeScript experts ready and willing

to help at https://nativescript.org.

GETTING TO MARKET FAST

So, what does this all mean: less shim code, write-once, deploy everywhere, and so on. Whether you’re

a business, an independent developer, or a casual enthusiast, you don’t want to waste your time. And,

these things (less shim code, write-one, and deploy everywhere) means you’ll spend less time developing

your app, giving you more time to innovate and release more features in less time.

1.3.3 What types of apps can be built with NativeScript

Now that you know a bit more about how NativeScript works, we think it’s important that you know the

type of mobile apps you can write with it. You’ll recall that NativeScript apps run directly on the device

and are interpreted by a JavaScript virtual machine running inside of the app. This means NativeScript

apps aren’t restricted from accessing native device APIs or hardware, so any app can be written as a

NativeScript app.

WARNING Hold up. Just because you can doesn’t mean you should.

Let’s start by looking at app types that you shouldn’t create with NativeScript.

https://nativescript.org/

 Branstein / The NativeScript Book 8

GRAPHIC-INTENSIVE GAMES

Let’s start off being clear: don’t write graphic-intensive games with NativeScript.

Imagine you’re developing the next big mobile game: Floppy Bunny, and Floppy Bunny requires a lot

of graphical and computational power to render its intense 3D graphics. While NativeScript is very

performant out of the box, there are likely better platforms made for the express purpose of creating

highly-performant 3D games.

After all, NativeScript apps run inside of a JavaScript virtual machine, so there’s an extra, albeit small,

layer of abstraction between your app and the bare metal. To extract every bit of performance out of a

device and make Floppy Bunny an overwhelming success, you should consider writing a native Android or

iOS app.

LINE-OF-BUSINESS AND CONSUMER APPS

If you’re feeling down because we shattered your hope of writing Floppy Bunny, don’t worry. There are

other types of apps that NativeScript is great for!

Unlike our game example, NativeScript is a perfect choice if you’re developing a line-of-business app

such as a news feed, companion app for a website, social media app, or even an app to control all the

smart devices in your home! In fact, there’s a wide variety of apps already written in NativeScript across

dozens of industries. Check out a showcase of these apps at https://www.nativescript.org/showcases.

1.4 How NativeScript works

Writing native mobile apps using JavaScript, XML, and CSS isn’t something you commonly hear about.

Instead, you hear about writing native mobile apps in Objective C, Swift, or Java. NativeScript makes it

possible to write native mobile apps with several components: the NativeScript runtime, core modules,

JavaScript virtual machines, your app code, and the NativeScript command line interface (CLI). Figure

1.5 shows how these components work together to create native Android and iOS projects, which get built

into native apps that run on a mobile device.

 Branstein / The NativeScript Book 9

Figure 1.5 How NativeScript components and your app code work together to build and run native iOS and Android

apps

We know there are a lot of boxes and lines in figure 1.5, and visualizing how these components work

together at this point may seem overwhelming. Don’t worry. We will go through each of the items later

in this book. For now, let’s get you started by explaining how everything works together at a high level.

Let’s start with something you’ve already learned: your app code is written in JavaScript, CSS, and

XML. After you’re written your code, it interacts with the NativeScript runtime and the NativeScript code

modules (API modules that you’ll learn about in this book).

Finally, a tool known as the NativeScript CLI, bundles your code, the NativeScript runtime, and

NativeScript core modules into a native app that contains a JavaScript virtual machine. This native app

then runs on Android and iOS.

DIVING DEEPER

That’s it! You just learned how NativeScript apps work at the 10,000-foot level, but let’s dive a little

deeper.

After creating your user interface (UI) using XML, you use CSS to style the UI (like CSS is used to

style HTML apps). Then, you write JavaScript to augment your UI. Your JavaScript code will contain writing

business logic that responds to events (like the app startup event) and interactions (like a button tap or

finger swipe). These three pieces (UI written with XML, CSS, and business logic written with JavaScript)

combine to create your app code.

By itself, your app code doesn’t have everything it needs to run on a mobile device; you also need the

help of three additional components: the NativeScript runtime, core modules, and a JavaScript virtual

machine. We’ll explore these components in future chapters, but for now, just remember that your app

code and these three components form the core of your NativeScript app.

 After you’ve developed your app code, it is fed into the NativeScript command line interface (CLI).

The CLI is responsible for creating native Android and iOS projects and merging the NativeScript app core

into each project. When run, the CLI invokes the native Android or iOS software development kits (SDKs)

to build and compile a native app. The compiled app is then deployed (by the CLI) and runs on a physical

device, simulator, or emulator.

As you can see, NativeScript’s beauty lies in its universal nature: you don’t have to spend time learning

native programming languages like Objective C, Swift, and Java because you can use JavaScript.

Furthermore, the platform agnostic commands provided by the NativeScript CLI ensure you don’t have to

learn how the native tools and SDKs for Android and iOS work.

MAKING IT EASY

You may be thinking that everything involved in a NativeScript app sounds complicated still. Further using

a command line interface may not be your style. That’s ok. There are other tools to help you get started

fast, like NativeScript Playground (https://play.nativescript.org) and NativeScript Sidekick

(https://www.nativescript.org/nativescript-sidekick).

DEFINITION NativeScript Playground is a browser-based environment for developing simple

NativeScript apps. It’s a great place to get started learning NativeScript, as you can develop apps

 Branstein / The NativeScript Book 10

without needing to install any additional software typically needed for native iOS and Android

development. All you need is your browser, and an Android or iOS mobile device connected to the

internet to get started.

DEFINITION NativeScript Sidekick is companion tool for NativeScript development. Sidekick helps you

bootstrap your apps, with rich starter templates, verified plugins, and integrated debugging. It’s an

ideal tool that can help you get started fast, and focus on your app instead of the initial setup and

configuration of a new app.

We’ll be covering these tools throughout the book and show you how they make it easy to get started.

1.5 Summary

In this chapter, you learned that:

▪ NativeScript apps are written in JavaScript, XML, and CSS and run in a JavaScript virtual machine.

▪ Your app code works with the NativeScript runtime, core modules, and a JavaScript virtual machine

to create the core of a NativeScript app.

▪ The NativeScript CLI abstracts away the complexities of native tools and SDKs, providing you with

a single platform-agnostic set of commands to build and deploy your app.

▪ You can use NativeScript Playground and NativeScript Sidekick to get started quickly.

NOTE Before you continue, you’ll need to decide how you’ll be using NativeScript. You can install the

NativeScript CLI (by using NativeScript Sidekick), or you can get started immediately by using

NativeScript Playground (no installation or configuration needed). In this book, we’ll show you both, so

you won’t miss out on anything by choosing one path over the other. But, you will eventually need to

have the NativeScript CLI installed to publish an app. If you’re using NativeScript Playground, navigate

to https://play.nativescript.org. Otherwise, refer to the official NativeScript installation instructions at

https://docs.nativescript.org/start/quick-setup to install the NativeScript Sidekick and configure the

NativeScript CLI on your system.

TIP If you’re using the NativeScript CLI and are having difficulties getting the Android emulator setup

and running, please see the Android Emulator Tips in appendix A.

 Branstein / The NativeScript Book 11

2
Your first app

This chapter covers

▪ The NativeScript runtime

▪ The NativeScript development workflow

▪ Getting started with the NativeScript CLI, Sidekick, and Playground

▪ Your first NativeScript app

In chapter 1, you were introduced to NativeScript. You learned that NativeScript provides you a way to

write your app code once and deploy your app to multiple platforms (iOS and Android). You also learned

that you can use your existing development knowledge of XML, JavaScript, and CSS to create NativeScript

apps. Now it is time for you to take a closer look at NativeScript and write your first app!

In this chapter, you’ll learn how to create your first app with NativeScript. In fact, you’ll learn how to

in 3 different ways: with the NativeScript CLI, Sidekick, and Playground. You’ve already learned a little

bit about the NativeScript CLI in chapter 1, so that’s where we’ll start, followed by the Sidekick, then the

Playground. Despite covering these ways in this order, do not take it as an endorsement on how to start.

We recommend you start by learning how to use the Playground – you can get started faster and won’t

have to install additional software on your computer. With this in mind, read through the sections on the

NativeScript CLI and Sidekick, then get started with the Playground.

TIP When learning to develop cross-platform mobile apps, you should choose a single device to test on

during your initial development. This is important because you don’t want to lose focus on the creation

of your app by testing on too many platforms at once. As you finish developing each feature of your

app, stop and test your application on various devices. Once you’re satisfied the feature works across

all platforms, then return to a single device for further development.

Throughout the book, we’ve chosen to develop and test our apps on an iPhone 6, so you’ll see a lot of

iPhone screenshots. When it makes sense, we’ll include a side-by-side comparison of the same app code

 Branstein / The NativeScript Book 12

running on Android. Just because we’re starting with an iPhone doesn’t mean you have to as well: use

the platform you’re familiar with because it will make testing easier.

Enough is enough, so let’s get started with the CLI and Sidekick. Familiarize yourself with these

sections, then build your first app with the Playground!

2.1 Hello world with the NativeScript CLI

It may be a bit cliché, but the hello world app is still a great way to get started in any new language (why

should NativeScript be any different?) After creating your hello world app in NativeScript, you will have

gained the necessary knowledge to continue creating more robust apps like the store front app that you

will be building in chapter 4. Let’s start creating the hello world app by using the NativeScript command

line interface (CLI) tools.

NOTE If you’re not planning to get started with the NativeScript CLI, you don’t have to follow along

with every CLI command. But, we recommend we read through the section because it covers various

basics about NativeScript and how your apps are structured.

2.1.1 NativeScript CLI

As you learned in chapter 1, the NativeScript CLI is a collection of tools you’ll use to build and run

NativeScript apps. The CLI is nothing more than an npm package that was installed into Node.js when

you configured your development environment for NativeScript.

DEFINITION Node.js is a JavaScript virtual machine (VM) interface written to interact with desktop and

server operating systems like Linux and Microsoft Windows. It was created in 2009 and allows

developers to use JavaScript and write software that can be run cross-platform. Like web browsers and

NativeScript, Node.js provides interface code to inform the JavaScript VM how interact with different

operating systems. You can learn more about Node.js at https://nodejs.org.

The NativeScript CLI will be used throughout your development lifecycle, as shown in figure 2.1.

 Branstein / The NativeScript Book 13

Figure 2.1 The CLI is used throughout the development lifecycle, transforming the XML, JavaScript, and CSS code you

write into apps that can be deployed to a device.

NativeScript apps are a collection of code files written in XML, JavaScript, and CSS. Collectively, the

UI, business logic, and styling form the pages of your app, like HTML application pages. Once you’ve

written the pages for your app, you use the NativeScript CLI to transform your code into a native app.

You then use the CLI to install and run the app in an emulator, simulator, or on a physical device.

You use the NativeScript CLI by invoking the tns <sub-command> command from your favorite

terminal or command line window.

DEFINITION TNS stands for Telerik NativeScript. Telerik is the company behind the NativeScript

project. The abbreviation TNS was chosen over NS to avoid confusion. The abbreviation NS is used

throughout Mac OS X and iOS APIs, standing for NextStep.

Various sub-commands exist in the CLI, all aimed at making it easy to build, deploy, and run your app

on Android and iOS platforms. We’re not going to delve into the inner-workings of the CLI, but we feel it’s

important you understand how integral the CLI is to NativeScript development. Without the CLI, all you

have is XML, JavaScript, and CSS files sitting around with no place to go. Throughout the book, you’ll see

us use the CLI for the following:

 Branstein / The NativeScript Book 14

▪ Creating your app

▪ Adding a mobile platform to your application (Android or iOS)

▪ Building your code into a native application (.apk file for Android and .ipa application file for iOS)

▪ Deploying your application to a mobile device

▪ Using an emulator to test your code

▪ Running your application on a device connected to your computer

2.1.2 Using the CLI to scaffold your project

A core function of the CLI is to accelerate your development process by automating tedious tasks. One

such task is creating a new NativeScript app. NativeScript apps have a very specific file and folder

structure that needs to be in place, and the CLI makes this lengthy task easy through a process called

scaffolding.

DEFINITION Scaffolding is the process of using a predefined template to generate files, folders, and

code. This process is called scaffolding because it resembles construction scaffolding, which is a

temporary structure on the outside of buildings, used by workers while they build the building. Just like

construction scaffolding, code scaffolding creates an application’s base structure that is then built-upon

and modified to create a working app. Scaffolding tools are becoming more-prevalent in software

development because they help reduce the time developers spend writing common, repeatable code

constructs.

You may be familiar with similar scaffolding tools such as the project templates built into Visual Studio

or another Node.js tool named Yeoman. Just like these tools, the NativeScript CLI’s scaffolding process

uses a collection of templates stored online as npm packages.

NOTE NativeScript templates are just npm packages. To find them, go to the npm website

https://www.npmjs.com, and search for packages beginning with the prefix tns-template.

What is Yeoman?

Yeoman is a scaffolding tool for building modern web apps with Node. Just like templates in

NativeScript, Yeoman templates are just NPM packages created and supported by the development

community.

For more information about Yeoman you can visit http://yeoman.io.

You will be using the hello world template to create your first NativeScript app. The hello world

template is NativeScript’s default template used to create new apps. To get started with this template,

load your favorite terminal. If you’re using Windows you can use the command prompt or PowerShell; on

 Branstein / The NativeScript Book 15

Windows, I generally stick to using the command prompt. On Mac OS or Linux, you can load your favorite

terminal program. When working on NativeScript apps on Mac OS, I use the default terminal.

During the installation of NativeScript, the tns command was added to your path or shell profile

(depending on the OS you are using). Let’s use it to create your first app by running tns create

HelloWorld.

When you run the tns create {app-name} command, the NativeScript CLI creates a new folder

(in the current folder) with the app name that you specified. After creating the folder, it scaffolds all the

code needed to build and run a new NativeScript app! Figure 2.2 shows the resulting directory structure

that is created for you after running the create command.

Figure 2.2 The file structure of your Hello World app.

Later in this book, we’ll go into more detail and you’ll learn about the folder structure of NativeScript

apps. For now, note that all the code that you will be writing for your app will be in the app folder.

TIP You ran the tns create command with only one parameter: HelloWorld. Alternatively, you could

have specified which template you wanted to use when scaffolding your project by using the –-

template {template name} argument. Without specifying the template name, the create

command will use the default hello-world template. You could have achieved the same results by

running: tns create HelloWorld --template tns-template-hello-world. In chapter

3, you’ll learn more about templates and how the NativeScript CLI scaffolds apps.

2.1.3 Initial platform and development tools

Before running your hello world app, you’ll need to decide whether you want to initially target iOS or

Android. It’s important to select one platform to target first, so you can focus on testing functionality in a

single app and on a single emulator or simulator. Once you’re confident your app works well on your first

platform, you can test it on the second.

Deciding on your development platform may seem like a tough decision, but it is probably easier than

you think because part of this decision may already be made for you. Table 2.1 shows the potential

platforms you will be able to target (depending on your OS). Unfortunately, you can’t target iOS unless

you have a Mac, so if you’re using Windows or Linux, Android is your starting platform. If you do have a

Mac, the choice is yours. But, if you’re still having trouble deciding, we recommend you start with a

platform you’re familiar with. If you have an iPhone, target iOS, otherwise target Android.

 Branstein / The NativeScript Book 16

Table 2.1 Targetable platforms for each development OS

Development Machine OS Targetable Platforms

Windows Android

Mac OS iOS, Android

Linux Android

Don’t worry if you are planning to use a Windows machine as your primary development machine and

would like to build for iOS later. It is easy to target and build your app for different platforms in

NativeScript. Targeting one platform from the start is the preferred workflow when working with

NativeScript. When the time comes to get your app on another platform, you can always borrow a Mac

from a friend (or better yet, buy an older refurbished Mac mini)!

In addition to choosing your target app platform, you’ll need to decide on the development editor you

are going to use. Whether you choose a basic text editor, Visual Studio, or another integrated development

environment (IDE), there is no wrong answer. Choose your favorite development tool. One of our favorite

editors that works well on both Windows, Mac OS, and Linux is Visual Studio Code.

TIP Visual Studio Code is completely free and can be downloaded from https://code.visualstudio.com.

Visual Studio Code works well on both Mac, PC, and Linux. It is what we use to write NativeScript apps

and is highly recommended for you while learning NativeScript. There is an official NativeScript

extension for Visual Studio code that will assist you while creating your app with better intellisense,

debugging, and emulator support. The extension is available at

https://www.nativescript.org/nativescript-for-visual-studio-code.

2.1.4 Adding and removing platforms

Now that you have started to create your first official NativeScript app, you are almost ready to get to

testing! Before you start testing your app, you will need to make sure your hello world app is targeting

the platform of your choice (or both). Adding and removing a platform is easy. If you need to add a

platform, run the following commands. Figure 2.3 shows the resulting platforms folders:

tns platform add android

tns platform add ios

 Branstein / The NativeScript Book 17

Figure 2.3 The resulting platforms folder on Windows, after you create your NativeScript app.

When you run the tns platform add command, the NativeScript CLI creates native Android and iOS

projects and adds important NativeScript runtime libraries to each project. These libraries (along with the

code you write) will eventually be bundled together into a native app and stored in a subfolder of the

platforms folder.

Because new features are continually being added to NativeScript, the NativeScript runtimes are

updated regularly. The NativeScript runtimes are included in the NativeScript npm package that you

previously installed. We recommend that you keep your NativeScript version up to date while learning

NativeScript with this book. You don’t have to update the NativeScript runtime when a new version is

available, but you may want to. You can check the version of NativeScript you have installed by running

the tns command with the --version parameter.

tns --version

You can check the latest version of NativeScript on npm at

https://www.npmjs.com/package/nativescript or using the npm command npm view nativescript

version. Since NativeScript is just a npm package, you can update it using the npm command npm

install -g nativescript.

NOTE Remember that NativeScript is an open-source project. You can read the version history and

latest changes to NativeScript on Github at https://github.com/NativeScript/NativeScript/releases. If

you’re so inclined, you can contribute to the project by submitting a pull request.

After updating your NativeScript runtime you will want to update the runtime files in your app (but

first you will need to remove the old files). The following commands show you how to remove the Android

and iOS platforms from your project using the tns platform remove command.

tns platform remove android

tns platform remove ios

 Branstein / The NativeScript Book 18

The NativeScript CLI will tell you if removing the platform was successful or not. If the platform did

not exist as a target in your project, the NativeScript CLI would not be able to remove it. Figure 2.4 shows

the resulting empty platforms folder after running both commands.

Figure 2.4 Empty platforms folder after running the command to remove both platforms.

To update your app with the latest version of the NativeScript runtime for the Android or iOS platforms,

run the following commands:

tns platform add android

tns platform add ios

NOTE If you try to add iOS as a target platform when developing on a Windows or Linux machine, the

NativeScript CLI will detect this and throw an error message. (Remember that Mac OS is a prerequisite

for targeting iOS as a platform).

As you’ve probably figured out by now, NativeScript organizes platform-specific files underneath the

platforms folder. When the platform add command is run, the latest runtime files will be copied into the

corresponding folder underneath the platforms folder. For example, if you browse the android subfolder

underneath platforms, you will notice quite a few files. The files that are copied consist of the following:

▪ Platform-specific files

▪ Platform configuration files

You will learn more about platform-specific files in a later chapter.

2.1.5 Running your app in an emulator

Now that you’ve learned how to target a platform, it’s time to run your app in an emulator and test it!

Use the following commands to launch your app, using either the Android emulator or the iOS simulator:

tns run ios --emulator

tns run android --emulator

NOTE Make sure you are running the run command from inside the root of the HelloWorld project

folder or else you will get an error.

 Branstein / The NativeScript Book 19

When you use the run command, the NativeScript CLI automatically builds a native Android or iOS

app for you. Figure 2.5 shows how the files in the platform-specific folders are combined with the code

for your app to create a resulting native app that will run on Android or iOS.

Figure 2.5 The CLI is used to package app code and platform-specific files into native Android and iOS apps

If you ran your app with the iOS parameter, the iOS platform files in the iOS folder were used to create

the native iOS app. Likewise if you ran your app for Android, the NativeScript runtime for Android (in the

android folder) was used. Figure 2.6 shows the resulting app running on a simulated iOS device.

 Branstein / The NativeScript Book 20

Figure 2.6 The hello world app running in the iOS simulator.

The resulting hello world app that you created consists of a button that you can tap. Go ahead and

click it and see what happens!

2.2 Hello World with NativeScript Sidekick

In the previous section, you learned how the CLI works, and how you can create a new NativeScript app

using the CLI. We prefer getting started with the CLI, because it’s how we originally learned NativeScript.

NOTE Go ahead, feel free to call us old school, or CLI-junkies. But there’s something nice about a well-

designed command-line interface.

You may feel differently about using the CLI, and that’s OK because NativeScript Sidekick (a.k.a.

Sidekick) is another easy way to get your app started.

WARNING Before you go any further, don’t forget to install Sidekick. You can find detailed instructions

on the installation at https://docs.nativescript.org/sidekick/intro/installation.

2.2.1 Getting Started with Sidekick

As you’ll recall, NativeScript Sidekick is a lightweight GUI client which runs on your desktop and is available

for Windows, macOS, and Linux. It enhances the power of the NativeScript Command-Line Interface (CLI)

and simplifies the entire process of developing mobile apps in NativeScript. Sidekick is designed to be an

unobtrusive companion that complements your favorite code editor, IDE, source control system, and any

other tools you use.

NOTE The official Sidekick documentation walk you through everything you need to know. So, check

it out at https://docs.nativescript.org/sidekick/getting-started/overview if you’re looking for more

information.

 Branstein / The NativeScript Book 21

When you run Sidekick for the first time, you’ll see the start splash screen, as shown in figure 2.7.

Figure 2.7 The NativeScript Sidekick shows a splash screen when loaded.

Create your first app in the Sidekick by pressing the + Create button. This opens the Create App dialog

(figure 2.8) where you can create an app using a template.

 Branstein / The NativeScript Book 22

Figure 2.8 The Create App dialog allows you to quickly create a new NativeScript app using a variety of templates.

If you’re following along, we’ll be creating the HelloWorld app using the Blank template. Select

JavaScript from the Project Type drop down (figure 2.9).

Figure 2.9 The Project Type drop down lets you select the language and app options for creating a new app.

NOTE You may have noticed the Project Type drop down has several options to select from. We’ll help

you understand these options throughout this book. For now, ignore them and select JavaScript.

After selecting JavaScript, select the Blank template, enter HelloWorld as the App Name, select a place

to save the project, and press the Create button. Figure 2.10 shows these completed steps.

 Branstein / The NativeScript Book 23

Figure 2.10 App configuration settings on the Create App dialog.

After your app is created, Sidekick shows you the HelloWorld app window (figure 2.11).

 Branstein / The NativeScript Book 24

Figure 2.11 The HelloWorld app window is where you can configure various settings for your app.

The app window is where you’ll spend a lot of time configuring various settings for your apps. On the

left, you can navigate between sections to configure general settings (like your app name), iOS or Android-

specific settings, create app icons and splash screens, etc. (figure 2.12).

 Branstein / The NativeScript Book 25

Figure 2.12 You can configure various settings of NativeScript apps via the app settings area.

Along the top, you have buttons for showing the app files in your file browser (Windows Explorer,

Finder, etc.), opening a command prompt, or open your app in your preferred code editor. You can also

create new pages for your app and run your app on a device or emulator/simulator (figure 2.13).

Figure 2.13 Along the top, there are various buttons to continue editing and updating your app.

2.2.2 Running an app with Sidekick

Earlier, you learned how to run the HelloWorld app in an emulator/simulator. Let’s do the same thing with

Sidekick.

WARNING Before we begin, make sure your iOS simulator or Android emulator is running.

Click the Run button at the top of Sidekick, then select Run on Device, as shown in figure 2.14.

 Branstein / The NativeScript Book 26

Figure 2.14 Click Run on Device to run your app on a simulator/emulator.

This displays the Select Devices window (figure 2.15). From here, you can choose where to build (or

compile) your app, and other various settings. We’re going to ignore these other settings (for now) and

revisit them later in the book, so don’t worry that you’ll be missing something. Press the Run on Device

button to launch your app on the selected simulator/emulator.

NOTE You’ll notice you can select between a Cloud Build and Local Build of your app. Local Builds

compile your app on your local machine, but it also requires a bit more setup to ensure everything runs

smoothly. Cloud Builds are a different option that builds your app on a server in the cloud, managed

by NativeScript. Cloud Builds are a quick way to get started, especially if you run into any problems on

your local machine.

 Branstein / The NativeScript Book 27

Figure 2.15 Select the desired simulator/emulator to run your app.

When your app finished building, it will start on the selected simulator/emulator (figure 2.16).

Figure 2.16 The HelloWorld app running in the iOS simulator.

As you can see, if you’re not familiar (or comfortable) with the command line, Sidekick makes creating

and running your app easy. We didn’t run through all of the features of Sidekick, so if you’d like to learn

more, walk through the detailed step-by-step tutorial online at

https://docs.nativescript.org/sidekick/getting-started/overview.

https://docs.nativescript.org/sidekick/getting-started/overview

 Branstein / The NativeScript Book 28

2.3 Hello World with NativeScript Playground

In the previous sections, you learned how to get started with the NativeScript CLI and NativeScript

Sidekick. The CLI and Sidekick are great ways to get started but require some setup on your development

machine: iOS and Android SDKs, Android Studio, Xcode (iOS), and various supporting applications and

utilities. If you want to get started fast (in a matter of minutes), the CLI and Sidekick just don’t do. But

don’t fear – that’s what the NativeScript Playground is for.

DEFINITION The NativeScript Playground is a browser-based environment for developing simple

NativeScript apps. It’s a great place to get started learning NativeScript, as you can develop apps

without needing to install the various SDKs and tools needed for native iOS and Android development.

All you need is your browser, an Android or iOS mobile device connected to the internet, and the

NativeScript companion apps to get started.

Now that you know about the NativeScript Playground, let's get started.

2.3.1 Preparing your mobile device

Before you jump into the Playground, you’ll need 2 apps installed on your mobile device: NativeScript

Playground and NativeScript Preview. The NativeScript Playground is a QR code scanning app that allows

you to scan QR codes from the NativeScript Playground website. After scanning the QR code, the app

downloads app code written in the Playground website and transfers it to the NativeScript Preview app.

The orchestration between apps may seem confusing right now, but don’t worry – you don’t need to know

exactly how it works. Just remember that you scan QR codes with the NativeScript Playground app.

Install these 2 apps on your phone. If you can’t find them in the Android Store or Apple App Store,

use the following links:

▪ NativeScript Playground (Android):

https://play.google.com/store/apps/details?id=org.nativescript.play

▪ NativeScript Preview (Android):

https://play.google.com/store/apps/details?id=org.nativescript.preview

▪ NativeScript Playground (iOS): https://itunes.apple.com/us/app/nativescript-

playground/id1263543946

▪ NativeScript Preview (iOS): https://itunes.apple.com/us/app/nativescript-preview/id1264484702

2.3.2 Getting Started with the Playground

Now that you have your mobile device ready to work with the NativeScript Playground, open the

Playground in your web browser by navigating to https://play.nativescript.org. You will see something

like figure 2.17.

 Branstein / The NativeScript Book 29

Figure 2.17 The NativeScript Playground welcome screen.

Click the Play now button to begin (figure 2.18).

Figure 2.18 Clicking the Play now button lets you get started with the Playground.

After clicking Play now a QR code will appear, and you'll be notified that your Playground is ready

(figure 2.19):

 Branstein / The NativeScript Book 30

Figure 2.19 When you begin using the Playground, you are presented with a QR code.

Dismiss this QR code by clicking the X in the upper-right corner. Don’t worry – you’ll scan a QR code

soon. This QR code is for a NativeScript app built using Angular and TypeScript. Right now, we don’t want

you to explore Angular. Instead, we’ll focus on NativeScript Core, which uses JavaScript.

After you’ve dismissed the QR code window, create a new NativeScript Core project by pressing the

New button on the Playground toolbar, and select NS + JavaScript as shown in figure 2.20.

 Branstein / The NativeScript Book 31

Figure 2.20 Create a new NativeScript Core project by selecting the NS + JavaScript option from the New menu.

This will create a new NativeScript app and display another QR code. Open the NativeScript Playground

app on your mobile device and select the Scan QR code action (figure 2.21).

Figure 2.21 The Scan QR code action brings up a QR code scanner in the NativeScript Playground app

 Branstein / The NativeScript Book 32

Using the QR code scanner in the NativeScript Playground app, scan the QR code displayed on the

NativeScript Playground website.

WARNING Do not scan the QR code in this book. Scan the QR code in the Playground.

After scanning the QR code, the NativeScript Playground app will open the NativeScript Preview app

and dynamically load the code from the Playground website and launch a native mobile app on your mobile

device! When this happens, you should see something like figure 2.22 on your mobile device.

Figure 2.22 Scanning the QR code from the NativeScript Playground website loads a NativeScript app on your phone

dynamically.

After the NativeScript app is loaded on your mobile device, the Playground website will change to show

you a markup and code view of your app (figure 2.23).

 Branstein / The NativeScript Book 33

Figure 2.23 A markup and code view of the app loaded on your mobile device.

Congratulations! You just used the Playground to write and launch a NativeScript app on your mobile

device. That was fast - and you didn't need to install anything on your computer!

2.3.3 Exploring the Playground User Interface

Now that you've learned how the Playground works, let's explore the UI. As you'll notice in figure 2.24,

the Playground UI is like a basic IDE, like Visual Studio Code, Visual Studio, Eclipse, or Web Storm.

Figure 2.24 The NativeScript Playground user interface is like other basic code editors.

 Branstein / The NativeScript Book 34

On the left is a file explorer, where you can add or update files and folders to your mobile app (figure

2.25).

Figure 2.25 The left side of the Playground is a file explorer, showing you the files and folders within your app.

The large central area is a file editor with Intellisense (figure 2.26)

 Branstein / The NativeScript Book 35

Figure 2.26 The central area of the Playground is a file editor.

The bottom central area shows you which mobile devices are connected to the Playground and

device/error logs for debugging purposes (figure 2.27).

Figure 2.27 The bottom central area of the Playground shows connected mobile devices and debugging information.

NOTE Hold on...the Playground shows you connected devices? Yes, that's right! When your mobile

device connects to the Playground, it registers itself with the website. You can see a variety of

information about a connected device.

NOTE Yes, my phone is named Brosteins ;-) Let the hazing begin.

Pretty cool, right? Well, there's something even cooler about the Playground: livesync.

DEFINITION Livesync is a technology that syncs changes made in the Playground down to your mobile

device in real time. This means that you can quickly make changes to your app in the Playground and

the changes will be instantly pushed to connected devices. If you've ever done mobile development

before, you'll understand how useful this is - getting feedback from your code running on real mobile

devices usually takes time, but with livesync, it's instantaneous.

Livesync isn’t exclusive to the Playground – it’s available in the NativeScript CLI, in Sidekick, and the

Playground. We’ll cover how livesync works in greater detail later in this chapter, but it’s hard to resist

showing you how cool livesync is right now. Let’s check it out quickly.

 Branstein / The NativeScript Book 36

NOTE Before we get started, be sure to install the NativeScript Playground and NativeScript Preview

apps on your mobile device. Also, if your app isn’t running on your mobile device or if your mobile

device name doesn’t appear in the devices area of the Playground (figure 2.27), re-scan the QR code

on the Playground to reload your app.

With your app is running on your mobile device, let's make a change. Find the home-page.xml file on

the left, then open it for editing by clicking on it (figure 2.28).

Figure 2.28 Open the home-page.xml file by clicking on it in the file explorer.

You'll notice some markup in the home-page.xml file. It's not important for you to understand the

markup right now, but you should know that any markup you place in this file will affect the native UI

generated on the home page of your app.

Even though you may not understand the markup, you can probably guess at the meaning on most

tags. NativeScript UI markup is can be easy to understand, because it's like HTML. For example, look at

the markup that displays a label on the screen that contains the text "Play with NativeScript!" (listing

2.1).

Listing 2.1 Label displaying the text Play with NativeScript!

<Label

 textWrap="true"

 text="Play with NativeScript!"

 class="h2 description-label">

</Label>

Let's change the text in the home-page.xml file. Change the text that reads "Play with NativeScript!"

to somethings else. Feel free to use the code in listing 2.2 below, or your own text.

 Branstein / The NativeScript Book 37

Listing 2.2 Modified label text

<Label

 textWrap="true"

 text="Using LiveSync is easy and convenient!"

 class="h2 description-label">

</Label>

After making this change, press the "Save" button in the Playground website (figure 2.29).

Figure 2.29 The Save button saves markup and code changes made in the Playground UI, then pushes the changes to

any connected mobile devices.

Now, look back at your mobile device, and watch the UI of the app change (figure 2.30).

Figure 2.30 Changes made to the Playground website are synced to connected mobile devices with LiveSync.

 Branstein / The NativeScript Book 38

See – livesync is easy and cool! You’ll learn more about livesync and how it’s used in the NativeScript

CLI later in this chapter. You’ll also continue to use livesync throughout this book and future NativeScript

apps you create. It’s an indispensable tool!

Now that you’ve seen 3 ways to get started with NativeScript, let’s take a quick look at what a

NativeScript app is made of and how tools like the NativeScript CLI, Sidekick, and Playground work to

turn your app code into a native mobile app.

2.4 NativeScript apps

Writing a native mobile app using JavaScript, XML, and CSS isn’t something that you commonly hear a

developer talking about. Instead, you hear about writing mobile apps in Objective C, Swift, or Java.

NativeScript makes it possible to write apps in JavaScript with several components: your app code, the

NativeScript runtime and core modules, a JavaScript virtual machine (VM), and the NativeScript command

line interface (CLI). Figure 2.7 shows how all the pieces of a NativeScript app fit together.

Figure 2.7 The NativeScript CLI takes 4 components (your app code, the NativeScript runtime and core modules, and a

JavaScript VM) and bundles them together to create a native app.

The core of a NativeScript app comes from the code that you write (in XML, CSS, and JavaScript). The

code that you write will also takes advantage of the NativeScript core modules and NativeScript runtime.

The NativeScript runtime and core modules are the libraries you will use when creating NativeScript apps.

Your app code and these libraries run inside a JavaScript VM (we’ll be going into more detail on this in a

bit). Together these 4 components are bundled together by the NativeScript CLI to create native apps for

Android and iOS.

2.4.1 The NativeScript runtime

When mobile apps are written in native code, they are compiled into a special application file and

distributed to a mobile device. Figure 2.8 shows how native code is written and deployed to devices.

 Branstein / The NativeScript Book 39

Figure 2.8 Native apps are written in Java (Android) and Objective-C (iOS) and compiled into .apk and .ipa files. These

files are then deployed to a mobile device where they run.

For iOS, you write code in Objective C, which is compiled and built into an .ipa file that is distributed

to a device running iOS. For Android, you write Java code, compile and build the code into an .apk file,

and distribute the .apk file to an Android device. When iOS and Android run their respective applications,

devices natively run the compiled Objective C and Java code.

When you write an application in NativeScript, you write the application in JavaScript, which is not

compiled, but is bundled into an application file along with the NativeScript runtime. Figure 2.9 shows

how the app code is run on an Android or iOS device.

 Branstein / The NativeScript Book 40

Figure 2.9 The CLI bundles your app code (written in JavaScript) and the iOS and Android runtimes to produce an app

that runs inside of a JavaScript virtual machine on a device

As you can see, you write your app code one time using JavaScript and the NativeScript runtime

ensures that it runs on Android or iOS. The NativeScript runtime is what issues the native calls on the

device when your app is running. The runtime does this through a JavaScript VM that is bundled into your

native app.

2.4.2 JavaScript virtual machines

JavaScript VMs are specialized pieces of software that take JavaScript code and run the code on an

underlying environment. If you’re familiar with web programming, you will have worked with a JavaScript

VM in your web browser. Each browser runs a JavaScript VM, which in turn, runs JavaScript code you

write. In simple terms, JavaScript VMs know how to do one thing: read and execute JavaScript code. For

example, a VM knows how to read and execute JavaScript variables, FOR loops, and functions.

Because JavaScript VMs know only about JavaScript, they don’t know about web browsers. Even

though they’re part of a browser, without help, they don’t natively understand browser concepts such as

the DOM (document object model), the document object, or the window object. As a result, when a

JavaScript VM is included inside of a web browser, the browser manufacturer creates interfacing code to

teach the VM how to interact with a browser. This teaches the VM that the document and window objects

exist, and represent the HTML document and the browser window, respectively.

 Branstein / The NativeScript Book 41

2.4.3 JavaScript virtual machines in NativeScript

Now that you’ve been introduced to JavaScript VM, and you understand how a VM is bundled with

browsers, you’ll learn how NativeScript leverages a JavaScript VM. Similar to browsers, NativeScript apps

are bundled with a JavaScript VM to read and run your JavaScript code. Just like a JavaScript VM in a

browser, the JavaScript VM bundled with NativeScript apps know how to do one thing—read and execute

JavaScript code.

But wait! If the NativeScript JavaScript VM only knows how to read and execute JavaScript variables,

FOR loops, and functions, how does it know how to interact with a mobile device like an Android phone or

iOS tablet? Without help, it doesn’t, which is why the NativeScript development team has written

interfacing code (called the NativeScript core modules and NativeScript runtime) to teach the JavaScript

virtual machine about mobile device APIs such as Android and iOS.

DEFINITION The NativeScript core modules are a collection of libraries that you will learn about

throughout this book. The libraries are what you will use to build your app and instruct the NativeScript

runtime what you what your app to do on a device. The core modules consist of different libraries such

as UI components (buttons, list views, labels), navigation, and the application.

DEFINITION The NativeScript runtime is interface code that bridges the gap between JavaScript code

and the native APIs for Android and iOS. Just like browser manufacturers teach their JavaScript VMs

about the document and window objects with interface code, the NativeScript runtime teaches its

JavaScript VM about the underlying native device APIs.

2.5 Establishing your development workflow

Now that you have a deeper understanding of how NativeScript works, it is time to establish a

development workflow for yourself. It is important to establish your development workflow before you

start creating your app. Because you write your code only once and the NativeScript runtime runs your

code as native code, you won’t have to spend a lot of time worrying about how your app will run across

the different platforms.

NOTE There are some features in Android that may not be in iOS and vice-versa. Because of this, you

still may have to write some code that is specifically targeted at Android or iOS. Luckily, NativeScript

provides several mechanisms for targeting code at specific platforms. You will learn more about

platform specific code in chapter 3.

Not worrying about platform-specific implementations is a relief because it allows you to focus on

features and functionalities of your app to make it better. And truthfully, I don’t want to know the details

of how buttons and text are displayed on Android versus iOS. That is what NativeScript is for!

Now, let’s learn about the typical NativeScript development workflow. This basic process is something

you’ll do over and over while you’re writing NativeScript apps. Figure 2.10 shows the three-step process

of writing your app code, invoking NativeScript CLI commands to bundle your code into a native app, then

testing your app.

 Branstein / The NativeScript Book 42

Figure 2.10 There are three steps to the NativeScript app development process: writing app code, using the CLI to

create native apps, and testing the app.

2.5.1 Building NativeScript apps

You already know that NativeScript apps are written in XML, JavaScript, and CSS. This is the first step in

your development workflow. Let’s take a closer look at step 2, the NativeScript CLI. In step 2, the

NativeScript CLI transforms your code into a native app, deploys the app to a mobile device (or

emulator/simulator), and runs the app. You’ve already seen the CLI in action when we created and ran

your first app: hello world.

When you created the hello world app, you used the tns run <platform> --emulator command

to build, deploy, and run the app in an emulator/simulator. However, you may want to build your app

without deploying and running it. You can build your app for either Android or iOS using one of the

following tns build commands:

tns build ios

tns build android

The tns build command packages your app code, the NativeScript runtime, and core modules into

the native app (figure 2.11).

 Branstein / The NativeScript Book 43

Figure 2.11 The tns build command bundles your app code, the NativeScript runtime, and the core modules into a

native app

Every time that you build your app, whether it is through the tns build or tns run command, the

NativeScript CLI takes your app code, along with the NativeScript runtime and core modules, and

packages it into a native app for Android or iOS. At this point you may be thinking that this seems like a

lot of work and that you are wasting a lot of time building, running, waiting for the emulator to launch,

and so on. If you were thinking that, you are correct: it can take a lot of time, especially if you have a

large app. So, let me re-introduce you to a better way: livesync.

2.5.2 Livesync

Because it’s time-consuming to build, deploy, and re-launch your app every time you want to test a

change, the NativeScript CLI, Sidekick, and Playground can quickly inject changes to your app code into

a running app. This process is called livesync, and it’s done automatically.

NOTE In earlier version of NativeScript, you had to use a special CLI command to use livesync. But,

it’s now been fully integrated into the CLI, and you don’t need to do anything special. Use tns run,

and the code running on your app will be kept up-to-date automatically. Even though livesync is built-

in, we still refer to the sync technology as livesync.

When you run the tns run command (or use Sidekick or the Playground to run an app), the livesync

engine NativeScript CLI calculates the delta file changes and synchronizes the files to the device (or

emulator/simulator). Figure 2.12 shows how livesync works by replacing individual files within a running

NativeScript app.

 Branstein / The NativeScript Book 44

Figure 2.12 Livesync monitors your app’s files for changes. When a change is found, it is synced to the running app.

2.6 Quick reference

We’ve touched on a lot of concepts in this chapter, and if you’re new to NativeScript, you may be feeling

overwhelmed. There’s CLI commands to understand, cross-platform compilation, and syncing source code

changes to running apps. Because this can be confusing, we’ve done two things for you. First, check out

our NativeScript CLI quick reference guide in appendix B: it lists out the CLI commands you’ll be using

throughout the book. Second, is a getting started quick reference in table 2.2. It’s got a recap of the

NativeScript CLI commands you’ll need use when creating a new app and running in an

emulator/simulator.

Table 2.2 Getting started with the NativeScript CLI: the three commands you need to know

CLI Command Description

tns create <app-name> Creates a new cross-platform NativeScript app named

<app-name>. A folder will be created with the name of

your app, and the NativeScript app structure described

in chapter 3 will be added. This command also creates a

vanilla NativeScript app, using JavaScript. For additional

options, check out appendix B.

tns platform add <platform> Adds the Android and iOS platforms to your app. This

command is optional, because tns run executes this

before building and deploying your app.

 Branstein / The NativeScript Book 45

tns run <platform> When your app has been created, take the shortcut and

use tns run android or tns run ios. This will

add the native platform, copy your app’s source code

into the native project, compile your app, install it on a

device, emulator, or simulator, run it, then monitor it for

changes using livesync. One command to rule them all.

We like it.

2.7 Summary

In this chapter, you learned the following:

▪ Establishing a development workflow early on will allow you to focus on the creation of your app

versus focusing on the different platforms.

▪ The NativeScript CLI is an integral part of your development workflow.

▪ How to use the NativeScript CLI to run various commands (create, platform add/remove, run).

▪ When you run an app with the tns run command (or use the Sidekick or Playground to launch

an app), NativeScript monitors your app’s source code for changes and syncs them to a running

device automatically.

PLAY To follow along in the Playground, check out https://play.nativescript.org/?template=play-

js&id=5FpdIF&v=3 – it contains the final code version shared in this chapter.

2.8 Exercise

In this chapter, we created a hello world app with a button and label. Try modifying the hello world app

we created in this chapter in the following ways:

1. Create a new project using the “blank” project template

2. Run the help command for run

3. Build the blank project you created in exercise 1

4. Run the blank project you created in exercise 1 in an emulator

2.9 Solutions

1. tns create ablankproject --template tns-template-blank

2. tns help run

3. Either command:

a. tns build ios

b. tns build android

4. Either command:

 Branstein / The NativeScript Book 46

a. tns run ios --emulator

b. tns run android –emulator

 Branstein / The NativeScript Book 47

Part 2:
Structuring

Your App

 Branstein / The NativeScript Book 48

3
Anatomy of a NativeScript app

This chapter covers

▪ How NativeScript apps are structured

▪ How the NativeScript runtime loads the first page of your app

▪ How you can target different mobile platforms using conventions

▪ How to organize your NativeScript app code

In Chapter 2 you learned how to create your first cross-platform app with the NativeScript CLI, how to

further use the CLI to add the Android and iOS platforms to an app, and how to test your app by running

it in an emulator. In this chapter, we’ll take a deeper look at the app structure the NativeScript CLI

scaffolds.

The structure of a NativeScript app is important because NativeScript is an opinionated framework for

developing mobile apps. Opinionated frameworks require you to write code, name files, and organize app

components in certain ways; if you don’t follow the rules of NativeScript, your app won’t run. At this point,

working with an opinionated framework probably sounds painful and frustrating. After all, why would you

want to be restricted to following such specific rules? Don’t worry: I’ve got your back. NativeScript’s rules

(also known as conventions) are easy to understand and make writing apps that work on Android and iOS

simpler, not more complex. Let’s jump in and learn!

3.1 Exploring the structure of a NativeScript app

All NativeScript apps have a common structure, automatically generated when you create your app with

the CLI command tns create <app name>. For example, to create a new app named myapp, run the

tns create myapp command. Figure 3.1, show the resulting scaffolded app structure.

PLAY To follow along in the Playground, check out https://play.nativescript.org/?template=play-

js&id=kZRkPj&v=2 – it contains the final code we’ll review throughout this chapter.

 Branstein / The NativeScript Book 49

Figure 3.1 Running the create CLI command scaffolds the structure of an entire NativeScript app for you. Within the

app’s root folder are several files, a node_modules folder, and a folder named app.

TIP As we explore the structure of a NativeScript app, keep in mind that some files and folders should

be left alone. You should not directly modify these files and folders. At first, this may be confusing and

you may not understand which files and folders shouldn’t be modified directly, so let’s establish a

ground rule.

Do not manually change files or folders unless they exist beneath the folder named app. The app folder

is your playground. All other files and folders should be considered off limits (for now). As you continue

through the book, we’ll provide you with exceptions to this rule. The exceptions are truly exceptions,

and we’ll be sure to call them out to you, explaining why I’ve asked you to break this ground rule and

make an exception. If you learn and follow this ground rule, you’ll have an easier time learning

NativeScript. To recap, if it’s in the app folder, you can change it; otherwise, hands off!

3.1.1 The root application folder and files

The NativeScript app structure has several components organized in a tree-like hierarchy of files and

folders (figure 3.2). At the root is a single folder, with a name of your app, as specified when running the

tns create <app name> command. All files and folders contained within this folder are used by you

and the NativeScript CLI to create a NativeScript app. Figure 3.2 shows the file and folder structure of a

NativeScript app created with the tns create myapp command.

Figure 3.2 The file and folder organization of a newly-created NativeScript app. The package.json file is also pointed

out as the only file in the root of the app’s folder.

 Branstein / The NativeScript Book 50

The package.json file (listing 3.1) is the sole file within the root app folder and is used to describe

characteristics of your app and dependencies your app relies on. Because the file is simply a JSON-

formatted text file, it’s easy to view and edit.

NOTE Although the package.json file is located outside of the app folder, you can manually edit the

contents. This is an exception to our ground rule.

Let’s take a closer look at the default package.json file to understand the purpose of each portion.

Listing 3.1 package.json file contents

{

 "description": "NativeScript Application", //#A

 "license": "SEE LICENSE IN <your-license-filename>", //#B

 "readme": "NativeScript Application", //#C

 "repository": "<fill-your-repository-here>", //#D

 "nativescript": { //#E

 "id": "org.nativescript.myapp" //#E

 }, //#E

 "dependencies": { //#F

 "nativescript-theme-core": "~1.0.4", //#F

 "tns-core-modules": "4.1.0" //#F

 } //#F

}

#A Provides a brief description of your app, features, and purpose

#B Points collaborating developers to your license file, to describe what rights others have to contribute to,

modify, alter, and redistribute your app code (optional)

#C Points others to your app’s README file

#D The location of your app public or private code repository (optional)

#E A NativeScript-specific section with an identifier for your app, used by Android and iOS platform to uniquely

identify your app

#F Listing of external libraries and library versions your app depends on, used by npm

You’re likely familiar with the package.json file, which is used by npm and by npm modules maintained

and installed with npm to describe the bundled code and to identify what dependencies this package relies

on. Although NativeScript apps are not technically npm modules, NativeScript has adopted the

package.json file to fill a similar role to that of the package.json file for npm modules. This file is central

to your NativeScript project because it is the authoritative source for describing your app. Collectively,

the description, license, readme, and repository fields provide others with information they may find

helpful when reviewing your code or collaborating with you. Although these first four fields provide others

with contextual information about your app, the nativescript and dependencies sections are much more

important.

NATIVESCRIPT SECTION

The nativescript section has a key field: id. The id field contains a unique identifier formatted in reverse

domain name notation. This unique identifier is used by NativeScript when building your app and is copied

from this location in the package.json directly into the native app files for Android and iOS.

 Branstein / The NativeScript Book 51

DEFINITION Reverse domain name notation is like a website’s domain name. Take

http://brosteins.com as an example. Brosteins.com is the domain name, and com.brosteins is the

reversed domain name notation.

What’s important to note is that every app you create should have a unique identifier. There are no

official rules preventing you from using any unique identifier (other than being unique), but it’s

recommended you use a unique identifier that is both meaningful to your app and contains a related

domain name you’re authorized to consume. For example, we created a NativeScript app for my son called

My Robot and used the unique identifier of com.brosteins.myrobot (listing 3.2).

Listing 3.2 The Brosteins My Robot app unique identifier, as found in the package.json file

{

 ...

 “nativescript”: { //#A

 “id”: “com.brosteins.myrobot” //#A

 } //#A

 ...

}

#A We chose the reverse domain name of com.brosteins.myrobot because we own the domain name and the

app’s name is My Robot

DEPENDENCIES SECTION

The second section of the package.json file of importance is the dependencies section. This section

prescribes to npm module specifications, meaning npm uses it to identify the name of other npm modules

used by your app. When you create your app, the nativescript-theme-core and tns-core-modules modules

is added as a dependency (listing 3.3).

Listing 3.3 tns-code-modules dependency included in package.json

{

 ...

 "dependencies": {

 "nativescript-theme-core": "~1.0.2",

 "tns-core-modules": "3.1.0"

 }

}

NOTE Don’t worry if you don’t know what the nativescript-theme-core and tns-core-modules modules

are for: you’ll be learning about them throughout the book. For now, you need to know that they’re

needed by NativeScript to make an app.

3.1.2 The node_modules folder

The first folder underneath the root folder of your app that we’ll investigate is the node_modules folder.

This folder is closely related to the package.json file we just looked at, because it contains a local copy of

your app’s npm package dependencies, as outlined in the package.json file.

 Branstein / The NativeScript Book 52

Figure 3.3 node_modules folder containing a local copy of the packages needed, as defined by the package.json file’s

dependencies section.

During your app development lifecycle, the node_modules folder is a folder you’ll see a lot; but you

will not interact with it directly.

NOTE Throughout the book, I’ll be using npm to add new packages, which will cause the contents of

the node_modules folder to change. This is ok, because I’m not changing the contents of the folder

directly.

NOTE You may notice that tns-core-modules-widgets module also included in the node_modules folder.

This is a dependency of the tns-core-modules module and is not listed in the package.json file explicitly.

3.1.3 The platforms folder

The second folder underneath the root folder of your app is the platforms folder. The platforms folder is

critical to your NativeScript app; but, when you create an app, the folder is empty.

Figure 3.4 An empty platforms folder, as seen immediately after creating your app.

The platforms folder is critical to your app because it houses platform-specific files, folders, and

resources needed to build native Android and iOS apps. Although the platforms folder is created when an

app is created (using the tns create <app name> CLI command), it is not used until you add a native

 Branstein / The NativeScript Book 53

platform to an app using the tns platform add ios or tns platform add android CLI commands.

When the tns platform add <ios or android> command runs, an android or ios subfolder is

created within the platforms folder. Figures 3.5 and 3.6 show running the tns platform add <ios

or android> command and the resulting subfolders created within the platforms folder.

Figure 3.5 Running tns platform add <platform> commands for ios and android from the command prompt.

Figure 3.6 Platform-specific subfolders for Android and iOS created within the platforms folder after running the tns

platform add <android or ios> CLI commands.

Like the node_modules folder, the platforms folder is automatically generated and maintained for you

by NativeScript.

NOTE Generally, the platforms folder is hands-off, but future chapters will introduce you to scenarios

where you may need to modify files in the platforms folder.

3.1.4 The app folder

Finally, the app folder. Up until now, we’ve been looking closely at all the supporting files and folders that

make up a NativeScript app, but, we haven’t looked at the code you will write.

You’ll recall from chapter 1 that NativeScript apps are composed of user interface markup written in

XML, styled with CSS, and supported with business logic written in JavaScript. But where do these files

go?

 Branstein / The NativeScript Book 54

Figure 3.7 The code components of a NativeScript app are XML user interface code, CSS styling code, and JavaScript

business logic code.

The app folder is where you’ll spend most of your time developing NativeScript apps because it contains

all of your XML, CSS, and JavaScript code. In fact, aside from some minor edits to the package.json file,

we usually forget about files and folders outside of the app folder while I’m developing and testing my

apps.

Inside of the app folder you’ll find the App_Resources folder, several files named app.<extension>,

bundle-config.js, main-page.<extension>, main-view-model.js, another package.json file, and a file

named references.d.ts.

Figure 3.8 The app folder contains a folder named App_Resources, several files named app.js, app.css, main-

 Branstein / The NativeScript Book 55

page.xml, main-page.js, main-view-model.js, package.json, and references.d.ts.

Let’s start by looking at the App_Resources folder.

APP_RESOURCES

Despite attempts to merge mobile development platform capabilities into a single set of common

commands, APIs, and user interface elements, no cross-platform mobile environment will bridge the gaps

between every mobile platform 100%. NativeScript gets close, but there are some aspects of Android and

iOS development that are fundamentally different. For example, screen resolution and dots per inch (DPI)

will vary greatly between hardware devices running Android and iOS.

DEFINITION Screen resolution is a measure of the number of pixels on a screen, usually described in

the form of width x height. For example, a screen resolution of 640x480 means the screen is 640 pixels

wide and 480 pixels high.

DEFINITION Dots per inch (DPI) is a measure of dot density, and is usually used in the printing industry

to describe the number of printed dots appearing in a square inch of a printed book or magazine. When

referring to screens, the concept of a “dot” is often confused with a “pixel.” Screens have pixels, not

dots; therefore, their density is measured in pixels with pixels per inch (PPI). Although DPI and PPI are

technically different, most people don’t differentiate between the two. In fact, the Android platform

prefers the terminology of DPI versus PPI. Through this book, we will use the term DPI.

 NativeScript compensates for the gaps between Android and iOS by placing platform-specific

customizations in the App_Resources folder. Beneath the folder you’ll find platform-specific folders for

Android and iOS.

Figure 3.9 File system hierarchy showing an android and an ios sub folder beneath the App_Resources folder.

The platform-specific folders contain files that only their platform cares about: the Android folder has

files that the Android platform needs, and the iOS folder contains files the iOS platform needs. It’s not

important for you to know what’s inside of the Android and iOS folders right now. Later in this chapter,

and throughout the book, I’ll explain the contents of the App_Resources folder in more detail.

One detail that is important to call attention to is the similarity between the platforms and

App_Resources folders. As you’ll recall from earlier in this chapter, the platforms folder also contains

platform-specific files and folders. In a way, the two folders are similar, but they are also different for

 Branstein / The NativeScript Book 56

many reasons. The most important difference between the two folders is you will make direct and manual

changes to files in the App_Resources folder, but not the platforms folder.

NOTE Remember the ground rule: it is safe to edit files and folders beneath the app folder. Because

App_Resource is beneath the app folder, it is safe to change.

It’s not important that you understand what changes you will be making right now, but it is important

to understand how the platform-specific files within App_Resources contribute to an app.

After you’ve made platform-specific changes to files under the App_Resources folder, you will run the

tns prepare <android or ios> CLI command. This command reads the platform-specific changes

from the App_Resources folder, then merges the changes into the native project files in the platforms

folder (figure 3.10).

Figure 3.10 When you run the tns prepare ios/android command, the CLI copies and merges platform-specific files into

the corresponding native platform folders in the platforms folder.

REFERENCES.D.TS

The references.d.ts file is a special file used by some integrated development environments (IDEs) and

editors to provide IntelliSense-like functionality for you.

DEFINITION IntelliSense is a technology built into many IDEs and text editors providing automated

suggestions for “code completion” when typing code. The suggestions are typically surfaced to you

through pop-ups next to or near the text you are typing.

Technically, this file has nothing to do with your NativeScript app, and only affects you if you were

writing your NativeScript app in TypeScript instead of JavaScript. We won’t go into detail about the

reference.d.ts file (or its contents). For now, just ignore the references.d.ts file. But, if you’re curious,

just can’t ignore it, or are interested in learning more about TypeScript, check out our summary of

TypeScript later in this chapter.

 Branstein / The NativeScript Book 57

DEFINITION TypeScript is a programming language, specifically a superset of JavaScript, adding

strongly-typed and class-based object-oriented capabilities. JavaScript virtual machines cannot natively

understand TypeScript, so TypeScript is transpiled (or converted) to JavaScript before being run.

BUNDLE-CONFIG.JS

This file is used to configure webpack (if it’s installed into your app).

DEFINITION Webpack is a module bundler, meaning that it can take various JavaScript modules spread

across multiple files and bundle (or pack) them into a single, compressed, and optimized format.

If you’re a web developer, you may have heard of webpack. We feel it’s important to point out the

bundle-config.js file, and that you can use webpack with NativeScript apps to make them smaller, more

efficient, and load faster. But, that’s as far as we’re going to go. Configuring and using webpack in a

NativeScript app is a more advanced topic that we’re not going to cover. If you’re interested in learning

more, checkout https://www.nativescript.org/blog/improving-app-startup-time-on-android-with-

webpack-v8-heap-snapshot.

MAIN-VIEW-MODEL.JS

The second file we’ll examine in the app folder is the main-view-model.js file. As you can tell by the file

name extension, this file is a JavaScript file. In NativeScript, JavaScript files typically contain application

and business logic code. At this point in the book it’s a little too early to take a deep dive into the contents

and functionality of the main-view-model.js file, but don’t worry because we will be looking at it in a later

chapter. For now, it’s only important to know it contains application code used by the next two files we’ll

examine: the main-page.xml and main-page.js files.

MAIN-PAGE.XML AND MAIN-PAGE.JS

The third set of files within the app folder are the main-page.xml and main-page.js. As you can tell by the

file names, main-page.xml is an XML file describing the user interface of a page within the app, and main-

page.js contains the page’s corresponding business logic. Together, these two pages form a cohesive unit,

representing a single page, named main-page (because of the file names). Later in this chapter, you’ll

learn more about the concept of a page and how files named in a similar manner are important. Right

now, you can think of a NativeScript page as something similar to an HTML page.

PACKAGE.JSON

The fourth file in the app folder is another package.json file. This package.json file is similar to the

package.json file found in the root of the NativeScript app. You’ll recall that the root package.json file is

used to describe the overall app and dependencies required for your app to build and run. This

package.json file is similar but instead of describing the overall app, it describes the configuration and

contents of the app folder.

NOTE You may find it strange that a package.json file exists within the app folder. After all, you have

already seen a package.json file in the app’s root folder; but there’s a reason behind its existence: the

contents of the app folder is actually an npm package. When npm packages are created, the author is

 Branstein / The NativeScript Book 58

required to include a package.json file describing the package. As a result, because the contents of the

app folder comes from an npm package, it contains a package.json file. Mystery solved.

Earlier in this chapter, you saw how the CLI’s tns create command scaffolds the file and folder

structure of a NativeScript app, but if you were to pause the CLI in the middle of the scaffolding process,

you would notice the app folder is empty. That’s because the contents of the app folder are dynamically

added from an npm package during app creation. More specifically, when the tns create command

runs, the CLI silently runs npm and installs the tns-template-hello-world npm package into a temporary

directory and merges the contents of the package into the app folder.

Figure 3.11 When you run the tns create myapp CLI command, empty folders are created (step 1), the tns-template-

hello-world npm package is downloaded (step 2), and the contents of the npm package is merged into the empty

folders (step 3).

Because NativeScript is open source and developed on GitHub, you can publicly see the contents of

the “Hello World” template, located at https://github.com/NativeScript/template-hello-world. When you

browse out to this URL, you’ll see that the contents of the repository look identical to the scaffolded app

folder.

Although the contents of the app folder came from an npm package, which requires that a package.json

file exists, NativeScript uses the file for more than a description of the original npm package. Let’s take a

closer look at the contents of the package.json file and differentiate which values exist due to npm’s

requirements and which are true NativeScript configuration values. You should take special note of the

NativeScript configuration values because we will be revisiting them in later chapters in greater detail.

Listing 3.4 Contents of the app\package.json file

{

 "android": { //#A

 Branstein / The NativeScript Book 59

 "v8Flags": "--expose_gc" //#A

 }, //#A

 "main": "app.js", //#B

 "name": "tns-template-hello-world",

 "version": "4.1.0" //#C

}

#A Okay to ignore this setting, but if you’re interested, it is NativeScript setting to configure how the V8

JavaScript virtual machine is run on Android. Don’t change it!

#B NativeScript setting for the application’s main entry point. Take note of this setting!

#C Values needed by npm; can be ignored because you don’t need to alter them

In the previous listing, you can see that many of the key/value pairs within the package.json file are

specific to npm. You can ignore these pairs. The android pair is a NativeScript-specific setting, but they’re

used internally by NativeScript and shouldn’t be changed. You can also ignore it. In fact, there is only one

pair of real importance to you: main, with a value of app.js.

The main key/value pair is used by NativeScript to identify your app’s main point of entry. By default,

this is set to app.js, telling the NativeScript runtime to load and execute the code within the app.js file

when the app starts.

APP.CSS AND APP.JS

The fifth and final set of files residing in the app folder are the app.css and app.js files. The app.css file

contains global UI styling, which is loaded by the NativeScript runtime when your app starts. You’ll learn

about UI styling in a future chapter. For now, remember the app.css file contains global styles and is

loaded when an app runs.

The app.js file is the first code that runs when an app starts. NativeScript knows to bootstrap the

app.js file because of the main setting of the package.json file (figure 3.12).

Figure 3.12 When your app runs, the NativeScript runtime bootstraps your code by reading the value of the main

name/value pair form the package.json file in the app folder. By default, main’s value points to the app.js file. The app.js

file is then run.

DEFINITION Bootstrapping is the act of loading a minimal amount of initialization code into a system

to facilitate the further loading and execution of the main application code. In many systems, the

bootstrapping process points to a specific place in memory, line of code, or function name to be run

first.

 Branstein / The NativeScript Book 60

NOTE In NativeScript, your code is bootstrapped by specifying the main code file containing your code,

which defaults to the app.js file.

Saying that the app.js file is run during the bootstrapping process isn’t enough, because it launches

the app code that you write. You may be asking what happens inside of the app.js file to load and display

the “home page” of your app? Let’s look at the app.js file for the answer.

require("./bundle-config");

var application = require("application");

application.run({ moduleName: "app-root" });

The app.js file has only three lines of code but only two that we will be concerned with right now. The

second line of code loads and obtains a reference to the application module. In short, the application

module is a collection of methods and objects that allow you to control global app behaviors, such as

starting the app. You’ll be learning about NativeScript modules in a later chapter, so it’s ok if you don’t

fully understand the first line of code yet. The third line of code tells NativeScript to start your app by

loading and displaying a module named app-root. We like to think of this module as your app’s home

page because it’s the first user interface page you’ll see in your app. Every app will have an app.js file

with (at least) these two lines of code – without them, your app will not load and display a home page.

NOTE In previous versoins of NativeScript application.start was used instead of

applicatin.run. In version 4 and later, NativeScript now supports multiple root frames that can

be loaded for your application instead of the previous one.

3.2 Understanding app startup

As you have learned about the basic structure of a NativeScript app, you’ve seen individual components

that cause your app to startup and load the first page of your app. Knowing about the individual

components is ok, but let’s look at how all of these components work together to orchestrate app startup.

To understand NativeScript app startup, let’s look at something you’re familiar with: an HTML

application. Imagine you’ve created an HTML application that you want to host at http://brosteins.com.

Your application contains one file: index.html. When you publish your application to your web server, you

configure the default home page for http://brosteins.com to be the index.html file, so users will

automatically see index.html when they browse to http://brosteins.com.

NativeScript apps work just like your HTML application – you place your app files into the app folder,

configure a starting page, and when you run the app, the NativeScript runtime reads your configuration

and loads the home page of your app (figure 3.13).

 Branstein / The NativeScript Book 61

Figure 3.13 When you type a URL, the webserver reads its home page configuration to determine which page to return

(the default page). The default page is then returned to the web browser and rendered as a web page. In NativeScript

when the app starts, its bootstrap configuration setting is read (which by default points to the app.js file), the app.js file

is loaded and executed, and upon execution, the application module points to a home (first) page. The home (first)

page is then loaded and rendered to you.

In an HTML application, when you point your web browser to the application’s URL, your web server

reads its configuration to determine the home page (index.html) and returns the home page to your web

browser. When a NativeScript app is run, the NativeScript runtime reads its configuration from the

package.json file, looking at the main key/value pair to determine the file to use as the main bootstrap

code. By default, NativeScript bootstraps the app.js file, executing code that tells your app to start and

load a page (which is main-page).

As you’ve been learning how NativeScript apps load your home page, you may have noticed that the

home page configuration points to a page called main-page, which is not actually a file in the app directory.

Main-page.xml and main-page.js are files, but what’s the deal with main-page without an extension?

When you tell NativeScript to look for main-page (without an extension), it automatically assumes there

is a file named main-page.xml.

Let’s look at the second line of the app.js file again:

application.run({ moduleName: "app-root" });

 Branstein / The NativeScript Book 62

The application is started by pointing to the page named app-root, which is assumed to be a file named

app-root.xml. Now look at the app-root.xml contents:

<Frame defaultPage="main-page"></Frame>

The app-root.xml loads a single Frame with the contexts of main-page.xml. You previously

learned how similarly named files, like main-page.xml and main-page.js, together form a cohesive unit.

For now, let’s call this cohesive unit a page.

DEFINITION A page is a collection of similarly-named XML, CSS, and JavaScript files that can be

referenced by ignoring the filename extension. For example, main-page.xml, main-page.css, and main-

page.js can collectively be referred to as a page named main-page.

When your NativeScript app runs and is told to load a page named main-page, the NativeScript runtime

knows (by convention) to search for three files: an XML file, a CSS file, and a JavaScript file named main-

page. Figure 3.14 shows how the NativeScript runtime uses this file-naming convention to represent a

page.

Figure 3.14 When the main-page page is referenced, the NativeScript runtime looks for and loads files named main-

page.xml, main-page.css, and main-page.js.

The similar names of user interface and business logic file isn’t by mistake or by chance. In fact, we’ve

stumbled upon a foundational tenet of NativeScript: conventions. This file-naming convention is key to

how NativeScript works and is an important concept to learn early on.

MORE CONVENTIONS

There are various other conventions in NativeScript that make it easy to use, but jumping into them right

now will distract you from what’s important: learning NativeScript. We’ll be touching on the conventions

throughout the book, but we’ve also put them in appendix C. If you’d like to learn about them now, feel

free to break away from chapter 3 and return here when you’re finished.

 Branstein / The NativeScript Book 63

3.3 Style guide and app organization

Earlier in this chapter, you learned about the structure of a NativeScript app, and how the app folder

contains a collection of your app’s user interface (XML), styling (CSS), and business logic (JavaScript)

code.

You also learned that similarly-named files (main-page.xml, main-page.css, and main-page.js, for

example) are treated as a single unit, which we have called a page.

What you haven’t learned is that NativeScript apps are built from a collection of pages. When an app

is created with the NativeScript CLI, the main-page page is placed in to root of the app folder. There is

nothing special about this location, except that your app.js file points to the root of the app folder to

initially load app-root (which loads main-page):

var application = require("application");

application.run({ moduleName: "app-root" });

As your app grows, you may start by placing additional pages in the root of the app folder, but this

can quickly become overwhelming. Imagine an app with 25 distinct pages, each having an XML, CSS, and

JavaScript file. 75 files are a lot of files to scroll through. We’ll argue that it’s too many to scroll through:

so you need to think about organizing your app’s pages right from the beginning.

Although there’s no right or wrong way to organize the pages within your app, we’ll share some helpful

tips to make your NativeScript app more manageable.

TIP Group each set of page files in a folder with the same name as the page.

Let’s assume your app has a contact-us page (figure 3.15).

Figure 3.15 Placing the contact-us.xml, contact-us.css, and contact.js files together in a folder named contact-us helps

to organize pages within your app.

You can see that the contact-us page files (contact-us.xml, contact-us.css, and contact-us.js) are

located inside of a folder named contact-us. This page organization helps keep similar and related files

together. Although this organizational technique is used to make it easier to find, locate, and manage

 Branstein / The NativeScript Book 64

your app’s files, it makes a huge difference and can save you from scrolling through hundreds of files in

the root of the app folder.

TIP Group related pages together by feature or functional area by placing related page folders into

another folder. The structure/form of your app pages and files should match the functionality of your

app; in software development, this is often referred to as “form follows function.”

Let’s use the Phone app on iOS as an example to illustrate how the structure of your app pages should

follow their functionality. Figures 3.16 and 3.17 show how form can follow function.

Figure 3.16 iOS’s Phone app starts on the Favorites tab, showing your Favorite contacts. You can navigate to the

contact details by tapping the information icon, or call a favorite by tapping their name.

 Branstein / The NativeScript Book 65

Figure 3.17 Based on the Phone app’s functionality, you could create an overarching favorites folder, containing sub-

folders for each of the three pages: list, call, and detail.

You will see how the Favorites tab within the Phone app displays a list of favorite contacts. From this

list, you can tap a contact to call them, or tap the information icon and navigate to a contact details page.

If you were designing this app in NativeScript, you should think about how to logically organize these

three distinct pages. Because the pages are related to the Favorites functionality, you could create an

overarching favorites folder, containing the page-level folders for the main favorites list (the list folder),

calling a favorite (the call folder), and viewing the contact’s details (the detail folder).

TIP Be agile.

Our final recommendation is to be agile. Don’t get tied into a specific way of organizing your app’s

pages, never intending to change them. In fact, you should change how your apps are organized as often

as their functionality changes and dictates. Remember what’s important. Don’t just create an amazing

 Branstein / The NativeScript Book 66

app, but create an app that is easy to maintain and easy for others to understand by looking at the

structure and code. Don’t spend an exorbitant amount of time organizing your app, but then again, don’t

dismiss the organization early on. If you make your app’s structure visually appealing, you’ll thank yourself

in the long run.

Now that you’ve learned how to structure your app and organize pages into folder, you’ll continue to

learn about pages in the next chapter. You’ll learn how to structure the user interface code within a page,

and how to navigate between pages.

3.4 Summary

In this chapter you learned that:

▪ All NativeScript apps have folders named platforms, node_modules, and app folder.

▪ You shouldn’t directly modify the contents of the node_modules and platforms folders.

▪ The app folder contains all your app’s code that you develop.

▪ Pages consist of similarly-named user interface (XML), style (CSS), and business logic (JavaScript)

code files.

▪ When organizing your app’s code, page files should be placed into a folder with the same name as

the page.

3.5 Exercise

In this chapter, you learned how NativeScript apps are organized. Try using what you learned to do the

following:

▪ Change the starting page of your app to a new page named home-page.

3.6 Solutions

To change the starting page of an app to home-page:

▪ Create a new file named home-page.xml.

▪ Change the app-root.xml file to launch the home-page page when the app loads: <Frame

defaultPage="home-page"></Frame>

 Branstein / The NativeScript Book 67

4
Pages and navigation

This chapter covers

▪ Creating multi-page apps

▪ Adding multiple UI elements to each page

▪ Responding to events and navigating between app pages

In chapter 3 you learned how NativeScript apps are structured. You also learned how the conventions of

NativeScript help keep your app code organized and make development easier. Now it is time to take

what you have learned in the previous chapters and start building a professional mobile app.

Over the next several chapters, you’ll be learning how to create a multi-page mobile app for Tekmo,

an imaginary company that sells retro video games and video game accessories. Tekmo wants to broaden

its reach to customers by creating a mobile app for iOS and Android that will showcase the products they

sell. This mobile app is their first foray into the mobile space, and they want to keep it simple, mimicking

their website. The app will consist of the following four pages:

▪ Home

▪ About

 Branstein / The NativeScript Book 68

▪ Contact Us

▪ Products

In this chapter, we’ll be building the first two pages of the Tekmo app: Home and About. The Home

page will be the first page app users see when they launch the Tekmo app. From the Home page, users

will be welcomed and can then navigate to the other three pages. The About page will share the history

of the Tekmo company, their passion for gaming, and the company’s mission statement. Through building

these two pages, you’ll learn how to create multi-page aps and how to navigate between pages. In future

chapters, we’ll finish the Tekmo app by building pages to submit questions and feedback to Tekmo (the

Contact Us page) and browse a listing of the retro video games for sale (the Products page).

Let’s get started!

4.1 Creating a multi-page app

In chapter 3, we discussed the organization of a NativeScript app; let’s take that knowledge we learned

in chapter 3 and apply it by creating a new multi-page NativeScript app. Most NativeScript apps are a

collection of multiple pages, and you navigate between pages. If this sounds a little overwhelming right

now, don’t worry. NativeScript provides several easy ways to navigate between pages, and you’ll be

learning about them throughout the book! Now, let’s dig in and learn about pages and navigation while

we build the Tekmo app.

Start by firing up your favorite command line tool and scaffold a new NativeScript using the command

line, just as you did when you created the hello world app in chapter 2. Use the tns create command

name the app Tekmo.

tns create Tekmo --template tns-template-hello-world

In chapter 2, we discussed that we could have used the template parameter to create the Hello World

app. The template option tells the CLI to use the template named tns-template-hello-world, which is a

simple app template. We like to start off our projects by using a simple template because it provides a

minimalistic starting point that requires nothing additional to start building an app.

PLAY To follow along in the Playground, check out https://play.nativescript.org/?template=play-

js&id=JSPR2b&v=6 – it contains the beginning scaffold of the Tekmo app.

When the CLI has finished creating the Tekmo project, open the Tekmo folder in your editor of choice.

TIP Visual Studio Code (VS Code) is a free editor created by Microsoft, geared at providing a light-

weight text-editing environment for developers. We love VS Code and consider it our editor of choice

for developing NativeScript apps. We’ll be using VS Code throughout the book. If you’re trying to decide

which editor to use, give VS Code a spin. You can download Visual Studio Code

https://code.visualstudio.com.

 Branstein / The NativeScript Book 69

NOTE Before you move on, we need to clean up the template and remove various defaults. Delete the

main-view-model.js file, then delete the contents of the main-page.js file. Finally, replace the contents

of the main-page.xml file with this markup: <Page></Page>.

In chapter 3, you learned some organizational techniques that you can use to help keep your app

organized. Our app will be small, so we’ll be using a single folder named views to organize all of our page.

Go ahead and create a new folder called views below the app folder. Your app files and folders should look

like figure 4.1 after creating the views folder.

Figure 4.1 The resulting file and folder structure of the Tekmo app after scaffolding a new app and creating a views

folder

Great start, now it’s time to fill up the views folder with some pages.

4.1.1 Creating the Home page

The first page you create should be your app’s main page, which is the page that is loaded when your app

loads. You’ll recall from chapter 3 that the app.js file contains the application.run code that tells

NativeScript what view to load when the app launches (as seen in listing 4.1).

Listing 4.1 The app.js file of a new NativeScript app

require("./bundle-config");

var application = require("application");

application.run({ moduleName: "app-root" }); //#A

#A The default home page for a NativeScript app is called app-root, which loads the app-root.xml file

By default, the app.js file loads the main-page page, which corresponds to the main-page.xml file.

We’ll update this in a moment, but let’s quickly review NativeScript pages and then create our new home

page.

 Branstein / The NativeScript Book 70

NOTE As of NativeScript version 4, the default template now creates an app-root.xml file which contains

a single frame element that loads the main-page.xml: <Frame defaultPage="main-

page"></Frame>. Previous versions of NativeScript called the application.start method which

automatically created a root frame for your application. The application.start method is now deprecated

in NativeScript 4.0 and the run method exists to allow developers the ability to create multiple root

frames within their app.

Pages are a collection of three files: XML, CSS, and JavaScript, as shown in figure 4.2.

Figure 4.2 A page in NativeScript is composed of 3 components: XML, CSS, and JavaScript.

The XML file defines the UI, CSS provides a mechanism for styling the layout, and business logic that

interacts with and collaborates with the UI resides in the JavaScript file.

Although NativeScript pages are defined as XML, CSS, and JavaScript, you don’t need to create all

three files; at a minimum, you need to create an XML file to define the UI elements of a page. The

remaining files (CSS and JavaScript) are optional. If you include them, NativeScript will automatically load

them when you open a page, but if they’re not there, NativeScript won’t complain and only load the XML

file.

TIP When you’re creating new pages, only create the files that you need. If you only need to define a

UI, only create the XML file. As your page begins to take shape and evolve, you can always add the

CSS and JavaScript files when they’re needed. Starting with the XML file can save you time.

We’re going to use our own tip and start with the UI of our Home page right now. Create the Home

page of the Tekmo app by adding a new file named home.xml underneath the views/home folder (figure

4.3).

 Branstein / The NativeScript Book 71

Figure 4.3 The home.xml view added to the views/home folder

The Home page that you added to the Tekmo app is obviously blank; you’ll be adding UI elements to

it soon, but let’s tell our app to load this new page when the app loads. You’ll recall that the app.js file is

the entry point for every NativeScript application. Let’s set the Home page to home.xml when the app is

launched by updating the app-root.xml file with the code in listing 4.2.

Listing 4.2 The app-root.xml file updated to launch the home.xml file

<Frame defaultPage="views/home/home"></Frame>//#A

#A Update the starting module name to point to the newly created home page located in the views/home folder

NOTE Remember the conventions that we discussed in chapter 3? When referencing a module (in this

case a page), NativeScript knows that this is an XML file so you do not need to put the filename

extension on to home.xml. Pointing NativeScript to the views/home/home location is enough to load

the page.

When your app loads, the code in the app.js file is executed. Let’s verify this by running your app. Use

the tns run CLI command in your command prompt to ensure everything is working correctly.

tns run ios --emulator

tns run android --emulator

You should see a blank screen when your app loads, as shown in figure 4.X.

 Branstein / The NativeScript Book 72

Figure 4.4 A blank home page is displayed after setting the new main page of the Tekmo app to views/home/home.

4.1.2 Adding content to the Home page

It is time to update the home.xml file and add some much-needed content to the Home page (we weren’t

going to have you leave it blank forever). Add a welcome message the page using the code in listing 4.3.

Listing 4.3 The views/home/home.xml file

<Page> //#A

 <StackLayout> //#A

 <Label text="Welcome to the Tekmo App!" /> //#B

 </StackLayout>

</Page>

#A The Page element is the container for all other elements in a page and the StackLayout element tells the

NativeScript runtime to place the elements that it renders on top of each other. You will learn more about the

StackLayout in chapter 5

#B A label to display text on the screen

As you may have already noticed, the XML markup of your page looks like the HTML of a webpage.

We’ll explain each of the UI elements in just a minute. But before we do, we’d like you to see the parallel

between NativeScript’s XML and HTML you’d find in an HTML application. Figure 4.4 illustrates these

similarities.

 Branstein / The NativeScript Book 73

Figure 4.4 Comparison of the home.xml in NativeScript to the HTML of a similar webpage

Just because NativeScript pages are defined using XML doesn’t mean that you can put any XML element

into the page. As you continue through this book you’ll learn about various XML elements that work

together. If you just can’t wait, you can find a complete reference of the available references online at

http://docs.nativescript.org/ui/components.

Now, let’s get back to building the Home page with the code in listing 4.4, which is the same code

shown in listing 4.3, but shown here for convenience.

Listing 4.4 The views/home/home.xml file

<Page> //#A

 <StackLayout> //#A

 <Label text="Welcome to the Tekmo App!" /> //#B

 </StackLayout>

</Page>

#A The Page element is the container for all other elements in a page and the StackLayout element tells the

NativeScript runtime to place the elements that it renders on top of each other. You will learn more about the

StackLayout in chapter 5

#B A label to display text on the screen

All NativeScript XML pages must begin with the Page element. The Page element is the parent container

for all other elements in a NativeScript page. Just like the body tag of a HTML page, you place all the

page’s content and other UI elements that you want to display on your NativeScript page inside of the

Page element. Figure 4.5 shows this concept, with several UI elements nested underneath the Page

element.

 Branstein / The NativeScript Book 74

Figure 4.5 All elements that you want to render on a page in NativeScript are placed inside the Page element.

Underneath the Page element, we’ve placed a Stack Layout and Label element, which together display

the text Welcome to the Tekmo App on the screen.

DEFINITION Stack Layouts are UI elements used to organize other UI elements within a page. The

Stack Layout works alongside other UI elements that are nested inside.

DEFINITION Labels are a UI element used to display text visually within a page. Just like other UI

elements.

The details of how stack layouts work (and even what they truly are) isn’t important right now, so

we’re going to side-step the details. We’ll cover the details in chapter 5, but for now, imagine that the

stack layout makes all elements inside of it appear on the screen, and every page we create in this chapter

needs a stack layout immediately underneath the page element. Let’s take a closer look at the Label

element.

Labels are self-explanatory: they display text on a screen. There’s not much more to say, except you

use the text property of the Label element to set the text that you want to display.

Now that you’ve learned the basics about everything on the home page, open the updated app in your

emulator and you’ll see something like figure 4.6.

Figure 4.6 A label rendered in the Tekmo app on the iOS simulator.

 Branstein / The NativeScript Book 75

How to run the tekmo app using the NativeScript CLI

In chapter 2, we introduced you to the tns run command. You can use the following CLI command

to run the Tekmo app in the Android emulator or iOS simulator:

tns run android --emulator

tns run ios --emulator

For a detailed list of CLI commands, see appendix B.

Looking good, on to the rest of the Tekmo app!

4.2 Creating another app page

With only one page, the Tekmo app doesn’t serve much of a purpose yet so it’s time to add more content

to the Tekmo app by creating another page.

4.2.1 Creating the About page

The second page we’re creating is the About page. Add another file to the views/about folder named

about.xml (figure 4.7).

Figure 4.7 The views/about folder of the Tekmo after adding the About page.

TIP Remember, it’s important to be consistent and organized, so we’re using the conventions suggested

in chapter 3, and adding a separate folder for each page of our app.

Just like when we created the Home page, we’ll need to update the XML of the About page to give it

content. Listing 4.5 contains the About page with several labels underneath the page and stack layout

elements.

 Branstein / The NativeScript Book 76

Listing 4.5 The views/about/about.xml file

<Page>

 <StackLayout>

 <Label text="Small company that wants to bring you the best in retro gaming!" />

 <Label text="Come visit us in Louisville, KY" />

 </StackLayout>

</Page>

Let’s look at the page in your emulator. Even though we haven’t learned how to navigate from the to

the About page yet, let’s use a quick trick to see the About page. Change the app-root from

views/home/home to views/about/about in the app.js file and run your app.

TIP If you’re working on a specific page that would normally require you to navigate to it to test, set it

as your default page. This helps to reduce your development time and instantly load the page in

development. Just be sure to change it back when you’re finished!

Figure 4.8 shows the About page after running your updated app in your emulator.

Figure 4.8 Multiple labels rendered in a Stack Layout element of the About page.

Right away, you have probably noticed something strange: the label text is being cut off. This can

happen depending on the resolution and orientation of the device that the page is being rendered on, so

it’s something you’ll continually need to think about when developing mobile apps.

NOTE Although NativeScript will let you write once and run on iOS or Android you will still need to be

mindful of device resolutions. There are hundreds of devices in the marketplace and that means there

are potentially hundreds of different resolutions that users are using your app in. Device resolution is

something you will have to consider as you write your app. Don’t worry though, I will show you some

tricks later in this book to help make sure your app works correctly across a multitude of devices and

resolutions!

 Branstein / The NativeScript Book 77

Although you do need to consider text length and screen size, NativeScript makes it easy: just add

the textWrap property to your labels. The following code shows you how to use the textWrap and

ensure label text doesn’t get cut off.

<Label textWrap="true" text="Small company that wants to bring you..." />

TIP Unless you’re trying to restrict your text to a single line, you’ll want to set the textWrap property

of a label to true. Get in the practice of setting it immediately after creating your labels.

NOTE If you’ve noticed a difference between the text in our figures and text in code, you’ve got an

acute eye for detail. We’ve purposefully truncated the text in code samples with ellipses to make it

more readable, but figures will show the full text. We’ll continue to do this throughout the book when

it makes sense.

Setting the textWrap property to true will cause NativeScript to render the label element on multiple

lines (the textWrap property of a label acts just text wrapping does in your favorite text editor). Where

the text wrapping of the label happens depends on the device that the page is being rendered on. In

figure 4.9, you can see how the textWrap property behaves when rendering the About page on an iPhone

6 device.

Figure 4.9 A label with the textWrap property set to true rendered on an iPhone 6 device

Wrapping text is one of the easy things you can do to account for multiple screen resolutions and

orientations. For now, it is nice to know that NativeScript has your back again when bad things happen

(ok text getting cutoff isn’t the worst thing in the world but at least it is nice to know the NativeScript

developers took this into account for you). As you continue to learn about NativeScript, we’ll go into more

detail on how to handle multiple platforms.

Now that you are finished creating the About page, it is time to talk about navigating between the

Home and About pages.

 Branstein / The NativeScript Book 78

NOTE Before continuing be sure to change your app’s starting page back to views/home/home

inside of the app.js file!

4.3 Navigating between app pages

Up until now, we’ve been living in the UI layer of the Tekmo app, creating XML files, and ignoring the

business logic that lives in JavaScript. Now that we’re ready to start navigating between pages, it’s time

to break out your JavaScript skills.

Like HTML applications, navigating between pages in a NativeScript app occurs in response to an action

(typically, tapping on a link or button). In the next sections, you’ll be learning how to add buttons to your

pages, respond to the button being tapped by a user, and then navigating to another page. This may

sound overwhelming at first, but it’ll turn out to be very straight forward.

NOTE You may have noticed that we didn’t say links and buttons are clicked in NativeScript apps.

That’s because clicking is what you do with a mouse, and most mobile devices don’t have a mouse

interface. Instead, you use your finger to tap the screen. Although the these are two different terms

for almost the same action, you might get an eye-roll from some hard-core mobile developers if you

mistakenly say click instead of tap.

4.3.1 Adding a button to the Home page

Throughout the beginning of the book, you’ve seen me use buttons on pages. Previously I’ve said not to

worry about the details of a button – thank you for waiting patiently! I hardly think a button needs an

introduction, but let’s be thorough and review what you should expect out of a button in NativeScript.

DEFINITION Buttons are a user interface element, having a visual and interactive aspect. Visually,

buttons have text that is displayed on the screen. As a point of interaction, you can write business logic

code in JavaScript that is run when a button is tapped. To create a Button element, use the XML code

<Button text=”...” />.

Let’s carry forward the button concept to the Tekmo app, and place a button on the Home screen. The

button should allow uses to learn more about Tekmo by tapping it and then navigating to the About page.

Listing 4.6 shows an updated version of the Home page for the Tekmo app, where we’ve added a button

to the page.

Listing 4.6 Adding a button to the Home page

<Page>

 <StackLayout>

 <Label text="Welcome to the Tekmo App!" />

 <Button text="About" tap="onTap" /> // #A

 </StackLayout>

</Page>

#A The tap property tells NativeScript which JavaScript function to call when the button is tapped

 Branstein / The NativeScript Book 79

Figure 4.10 The Home page, complete with the About button.

As you can see in listing 4.6 and figure 4.10, like the label element, the button element has a text

property that you can set to use to display what you want the button displays to the user.

NOTE When rendered on iOS the buttons look like a web link. If you are unfamiliar with iOS this is the

current native styling of a button in iOS.

You may have also noticed the button element has an additional property: tap=”onTap”. The tap

property of the Button element is an event that is raised by the button; as you may have guessed the

button raises an event named tap when the button is tapped. You can handle the tap event by setting the

value of the tap property to the name of a function in your corresponding JavaScript file.

DEFINITION An event is an occurrence of something that happens with a NativeScript app. An event

may occur because of user interaction with your app or because of a state that your app has transitioned

to such as started, closing, closed, or out of memory. When an event occurs, it’s referred to as being

raised. When you configure your app to respond to a raised event, it’s called handling the event. In

NativeScript, you handle events through the JavaScript code you write in your app.

Ok, we just covered a lot there in a few sentences, and I promise we’ll explain it in more detail in a

minute. For now, let’s focus on the button. Figure 4.11 helps you visualize the process of tapping a button

and how the onTap() function is called.

 Branstein / The NativeScript Book 80

Figure 4.11 How tapping the About button calls a method defined inside of the corresponding JavaScript file.

Now that we’ve visualized and briefly explained how the onTap() function is called, let’s get back to

our concept of a NativeScript page: how did NativeScript know which file the onTap() function was in?

4.3.2 Button events

When the Home page is loaded in your app, do you remember what gets loaded? You may recall the

answer from chapter 3 where you learned about page naming conventions within NativeScript. When a

page is loading the NativeScript runtime looks for a correspond .js and .css file to load alongside the .xml

file. In this case the runtime is looking to load home.xml, home.js, and home.css. Figure 4.12 shows how

these three files are used when the home page is loaded.

Figured 4.12 The three files that the NativeScript runtime loads when the Home page is loaded.

Back to our previous question. Assuming we have a button defined as <Button text=”About”

tap=”onTap” />, how does NativeScript know which file the onTap() function is in? The answer is

almost too easy, but for completeness, it looks in the corresponding JavaScript file for the page. In our

case, that’s the home.js file.

Now that we know how NativeScript finds the onTap() function, let’s create the onTap() function in

the home.js file.

 Branstein / The NativeScript Book 81

TIP As I have previously discussed, it is important to maintain conventions when writing your app code.

Implementing event handlers is another way you can use conventions to keep your code maintainable.

We recommend using the appending “on” to the event name when handling events in your app. By

adopting this convention, it will be much easier for you to maintain your app as it grows.

Listing 4.7 outlines the onTap() function definition and the navigation to the About page. There’s a

lot of new concepts in the code, so we’ll be walking you through it below.

Listing 4.7 Implementation of the onTap function in the home.js file

var frameModule = require("ui/frame"); // #A

function onTap() {

 frameModule.topmost().navigate("views/about/about"); //#B

}

exports.onTap = onTap; //#C

#A Get a reference to the NativeScript frame module which is used for navigation

#B Use the frame module to navigate to the About page

#C The function must be exported so the NativeScript runtime can access it from the UI

At the top of the home.js file, we load the frame module by requiring ui/frame. Navigation in

NativeScript relies on the frame module.

DEFINITION The frame module is another module included in the NativeScript core modules, which is

the collection of cross-platform abstractions used throughout NativeScript apps for UI and business

logic code. The frame module is used to navigate between pages in your app by invoking the

navigate() method on the topmost frame. If it helps, think of your app’s frame as the outer wrapper

that contains, loads, and navigates between pages.

DEFINITION The topmost frame is another cross-platform abstraction used to indicate the outer-most

frame responsible for navigating to and loading new pages.

After the declaration for the frame module, you’ll see the onTap() function definition in listing 4.7.

Inside the function you’ll see the frame module being used to get the topmost frame, and then navigating

to the About page.

When the navigate() method is called, there’s a little more going on behind the scenes in

NativeScript, but let’s keep it simple. In addition to the new page being loaded, NativeScript keeps track

of a few things such as the list of previous pages, data (or variables) specifically passed to the new page,

and directives on how to animate the transition to the new page once it’s been loaded (figure 4.13).

 Branstein / The NativeScript Book 82

Figure 4.13 The frame module is used for navigation. When navigating with the frame module, frame information is

transferred and stored within the page.

Now, that wasn’t too difficult. With a few lines of code, you’re able to respond to a button tap, load

the frame module, and navigate to a new page. It really is that easy. Go ahead and run your app again

and navigate to the About page by tapping the About button.

Figure 4.14 The About page after navigating to it with the frame module. The frame module uses native navigation on

the Android and iOS platforms which allows the user to easily navigate back to the previous page.

After navigating to the About page, you may have noticed it looks a bit different now: a back link is

automatically displayed at the top of the app. This is displayed because NativeScript is keeping track of

your navigation history. In future chapters, we’ll go into more detail on how you can use the frame module

to navigate and further control the history and even send data between pages.

Before we dive into some of these more advanced scenarios, let’s learn how to animate page navigation

through something called a transition.

 Branstein / The NativeScript Book 83

4.3.3 Applying transitions to page navigation

When you navigate between pages in a NativeScript app, the new page loads by sliding in the from the

right of the screen. If you ask us, this animation is a little plain. But, there’s good news: you can easily

change this animation by applying something called a page transition.

DEFINITION A page transition is an animation that occurs when you navigate from one page to another.

There are several different types of page transitions you can use in NativeScript, but you will want to

be careful which transitions you use because only some are available for both Android and iOS. Table 4.1

show which transitions are available to each platform.

Table 4.1 Navigation transitions and the platforms they are available on

Transition Platform Availability

curlUp iOS

curlDown iOS

explode Android (Lollipop and later)

fade Android, iOS

flipRight Android, iOS

flipLeft Android, iOS

slideLeft Android, iOS

slideRight Android, iOS

slideTop Android, iOS

slideBottom Android, iOS

Most of the transitions available to you are self-explanatory. In the Tekmo app you are going to use

the slideBottom transition since it is available on both Android and iOS. As the name implies, the

slideBottom transition makes the page that you are navigating away from appear to “slide” towards the

bottom of the screen. Likewise, the flipRight transition makes the page that you are navigating away from

appear to be “flipping” towards the right.

NOTE When you transition back to the previous page the opposite transition will be applied. In the

upcoming example, you will implement the slideBottom transition; when you navigate back to the Home

page, the slideTop transition will apply automatically.

 Branstein / The NativeScript Book 84

Enough about what transitions look like; let’s start using them. Update the home.js file to contain the

code in listing 4.8. As you’re updating the code, you’ll notice a new object named navigationEntry is

used and passed into the navigate() function instead of passing the name of a page.

DEFINITION The navigation entry object is an interface called NavigationEntry. This interface defines

the data that is passes from page to page when the navigate method is called from the frame module.

It allows you to define what page you want to navigate to, page transition animations, and how to

handle the navigation history.

Listing 4.8 Applying the slideBottom transition when navigating to the About page from the Home

page

var frames = require("ui/frame");

function onTap() {

 var navigationEntry = { //#A

 moduleName: "views/about/about", //#B

 transition: { //#C

 name: "slideBottom" //#C

 } //#C

 };

 frames.topmost().navigate(navigationEntry);

}

exports.onTap = onTap;

#A The NavigationEntry variable represents an instance of the NavigationEntry interface defined by NativeScript;

there are several optional properties of the object that you can specify

#B The moduleName is an optional property that specifies the page that you want to navigate to

#C The transition property will set the transition that you want to apply when navigating to the module you

defined. The name property of the transition object is the transition that you want to use.

The navigationEntry object contains several properties used by the navigate() function to

manage the navigation from page to page. In listing 4.8, we use the moduleName and transition

properties, which reference the page to navigate to and the page transition to use during navigation.

TIP In chapter 3, you learned about platform-specific file-naming conventions. Navigation transitions

are a good use case for a platform-specific JavaScript files because not all transitions are available on

both Android and iOS.

Unfortunately for you, the world has not figured out how to put animations into books so you can’t

really visualize the slideBottom transition (I guess you will just have to try it yourself in the Playground).

PLAY To follow along in the Playground, check out https://play.nativescript.org/?template=play-

js&id=JSPR2b&v=43 – it contains the final code shared in this chapter.

4.4 Summary

In this chapter, you learned how to:

 Branstein / The NativeScript Book 85

▪ Implement a page in NativeScript

▪ Handle the tap event of a button and implement corresponding business log when the button is

tapped

▪ Navigate between pages in a NativeScript app using the frame module

▪ Bind and respond to application wide events such as the application launch event

4.5 Exercise

1. Modify the Tekmo app and apply the fade animation when you navigate to the About page

2. Add a button to the About page that will navigate to the Home page

4.6 Solutions

1. Update the home.js file:

var frames = require("ui/frame");

var navigationEntry = {

 moduleName: "views/about/about",

 transition: {

 name: "fade"

 }

};

function onTap() {

 frames.topmost().navigate(navigationEntry);

}

exports.onTap = onTap;

2. Update the about.xml and about.js file:

Add to about.xml:

<Button text="Home" tap="onTap"></Button>

Add to about.js:

 var frames = require("ui/frame");

function onTap() {

 frames.topmost().navigate("views/home/home");

}

exports.onTap = onTap;

 Branstein / The NativeScript Book 86

5
Understanding the basics of app

layouts

This chapter covers

▪ Why it’s important for an app’s design to match its function

▪ How to organize and layout the user interface (UI) of a NativeScript app with a Stack Layout

▪ How to use common UI elements (labels, buttons, and text boxes)

▪ How to create scrollable pages using the Scroll View

In Chapter 4, you learned how to navigate between the pages of a NativeScript app using XML and

JavaScript code. You also began to create a mobile app for the Tekmo company. In this chapter, you’ll

continue to refine Tekmo’s app while learning about UI layouts.

5.1 Understanding NativeScript layouts

Just creating pages for your app and navigating between them isn’t enough. Mobile app development is

also about creating compelling user experiences to accomplish a purpose. This means you need to present

and organize your UI in different ways depending upon what the users of your app do.

For example, let’s assume you design a fitness app with a dashboard showing you how much you

exercise each day, like the fitbit app shown in figure 5.1.

 Branstein / The NativeScript Book 87

Figure 5.1 Two different UI layouts, with charts data points displayed on the left dashboard page, and more tabular data

entry on the profile page, as seen in the fitbit app on iOS

On the dashboard are several different charts and graphs displaying your daily progress. The charts

and graphs are oriented in different patterns on the screen to catch the eye of a user, drawing attention

to the most important data first (your step count). On a different page, users complete a personal profile,

including their name, birthdate, height, weight, and fitness goals. Because of the difference in information

displayed on the profile page, the UI elements are arranged in a vertical stack.

Right now, designing a mobile app with these various organizational layouts may seem daunting, but

don’t worry. In this chapter and subsequent chapters, you’ll be learning how to organize UI elements. In

fact, NativeScript makes organizing your UI easy with a collection of UI elements called layouts.

DEFINITION A layout is a special UI element that instructs and informs your app how to organize other

UI elements on a mobile device’s screen. If you want a button to dock (or always be displayed) at the

bottom of your screen, or if you’d like to organize several buttons in a grid-like collection of rows and

columns, there are layouts to help you.

Because NativeScript layouts are UI elements, they are defined in XML. Although I call layouts a UI

element, they are not displayed on a mobile device’s screen when a page is loaded. Instead, they affect

the location and arrangement of UI elements placed within the layout. Because layouts will contain other

UI elements, they are referred to as layout containers.

In listing 5.1, I have included a Stack Layout with several nested UI elements. You’ll learn about Stack

Layouts in just a moment, so you might not understand how a Stack Layout works right now, but take

 Branstein / The NativeScript Book 88

note that when UI elements are placed inside of a layout container, they are arranged and displayed on

the mobile device screen in various ways (according to the rules of their container).

Listing 5.1 Stack Layout container with several UI elements

<StackLayout> #A

 <Button text="Everything is awesome..." /> #B

 <Button text="when you’re using NativeScript!" /> #B

</StackLayout>

#A Stack Layout is a UI element, but will not be displayed on the screen

#B UI elements contained within the Stack Layout element will be displayed, per the rules imposed upon them by

the Stack Layout

In total, there are five different layouts: stack layout, grid layout, wrap layout, dock layout, and

absolute layout. I’m not going to go into detail about all the layouts, but instead focus on the most

common layouts you’ll use when building your first several apps: stack and grid. You’ll learn about the

stack layout in this chapter, and the grid layout in chapter 6.

NOTE Every NativeScript app page you create will have a layout, but you’re not limited to having a

single layout on a page. In later chapters, I’ll show you how to build more complex UIs by nesting (or

combing) two or more layouts together.

TIP The NativeScript documentation on layout containers is an excellent resource:

https://docs.nativescript.org/ui/layout-containers. The explanation of all five layouts is a great quick-

reference guide. Bookmark it now.

5.1.1 Layouts and screen pixels

As you’re learning about layouts, it’s important for you to understand some basics of how NativeScript

(and most mobile devices) display UI elements on the screen. In chapter 3, you learned about screen

resolution and DPI.

DEFINITION Screen resolution is a measure of the number of pixels on a screen, usually described in

the form of width x height. For example, a screen resolution of 640x480 means the screen is 640 pixels

wide and 480 pixels high.

DEFINITION Dots per inch (DPI) is a measure of dot (or pixel) density on a mobile device’s screen. In

mobile apps, it’s used to describe the number of pixels appearing in an inch of screen along the width

or height. Most devices have the same DPI in both horizontal and vertical directions, so the DPI is

described as a single number. For example, 400 DPI would mean 400 pixels per inch exist in each row

and column of pixels.

Although mobile devices have varying screen resolutions and DPI, all devices have rectangular screens

organized in rows and columns of pixels. Each pixel on the screen can be references by using a coordinate

of (X, Y), with X representing the number of pixels from the left of the screen and Y representing the

number of pixels from the top of the screen.

 Branstein / The NativeScript Book 89

Figure 5.2 The leftmost top pixel is referenced by the (0, 0) coordinate. The fourth pixel from the left and fifth from the

top is referenced by the (3, 4) coordinate.

Figure 5.2 shows how the leftmost top pixel can be referenced by the coordinate of (0, 0). Similarly,

the pixel in the fourth column and fifth row down can be referred to using the coordinate (3, 4).

NOTE You’ll notice that the first row and column on the screen is referred to using the number zero.

You’re probably familiar with this practice of counting from zero instead of one, but I just like to call it

to your attention.

When you use NativeScript layouts to organize your UI elements, you won’t spend a lot of time thinking

about individual pixels (at first). However, as you learn about each layout using screen coordinate to

reference pixel is an easy way to explain how NativeScript places UI controls on the screen. You’ll also

use the concepts you learned about screen coordinates later in this book when you start styling apps with

CSS.

TIP We’ll cover a few basic layouts in this book, but there’s a lot of resources online. One of our favorites

is https://nslayouts.com. NS Layouts is a fun and easy way to learn layouts in a game-like atmosphere.

 Branstein / The NativeScript Book 90

5.2 Stack Layout

Earlier in this chapter, you learned that UI elements located inside of layout containers are arranged on

the screen based upon the rules governing the associated container. Listing 5.2 and figure 5.3 shows the

same Stack Layout you saw previously in code and on a mobile device.

Listing 5.2 Stack Layout container with several nested UI controls

<StackLayout>

 <Button text="Everything is awesome..." />

 <Button text="when you’re using NativeScript!" />

</StackLayout>

Figure 5.3 A Stack Layout displays its nested UI elements "stacked" on top of each other.

Staying true to its name, the Stack Layout organizes its nested UI elements by "stacking" each child

element on top of each other. When the two Buttons are placed inside of the Stack Layout, they are placed

on the screen in the same order they appear in XML. NativeScript does a lot behind the scenes to make

the Buttons display in a stack, and the details aren’t important. However, at a high level, each UI elements

contained within a Stack Layout are placed on the screen, sequentially. The first Button with the text of

"Everything is awesome..." is placed on at the top of the screen, then the second Button is placed beneath.

TIP Stack Layouts are the most common layout container used in NativeScript apps, and I find myself

using them everywhere. On most pages, the very first UI control I add is a Stack Layout. As you

continue to learn about other layout containers and wonder which layout you should use, start with a

Stack Layout.

5.2.1 Adding content to the Tekmo app using Stack Layouts

Now that you’ve learned how to use the Stack Layout, let’s continue to build out the Tekmo app. In chapter

4, I created the Tekmo app and added two pages: Home and About. I also added basic navigation from

the Home page to the About page. In this chapter, I’ll be adding a third page, Contact Us, and also fleshing

out the About Us page with additional UI elements. Figure 5.4 shows what I’ll be building up to through

 Branstein / The NativeScript Book 91

the rest of this chapter. You can follow along, incrementally building each page with me or you can

download the full code listing from Github at https://github.com/mikebranstein/TheNativeScriptBook.

Figure 5.4 Final chapter 5 version of the Tekmo app incorporating layouts and additional UI elements for the Home,

About, and Contact Us pages.

ADDING CONTENT TO THE ABOUT US PAGE

In chapter 4, I added a brief summary of the Tekmo company to the About Us page, as seen in listing 5.3

and figure 5.5.

Listing 5.3 The About Us page created in chapter 4 with a brief description of the Tekmo company

<Page>

 <StackLayout>

 <Label text="Small company that wants to bring you the best in retro gaming!"

 textWrap="true" />

 <Label text="Come visit us in Louisville, KY" />

 </StackLayout>

</Page>

Figure 5.5 The About Us page from chapter 4 before I’ve added addition content to the Stack Layout.

 Branstein / The NativeScript Book 92

In HTML applications, About Us pages typically have a heading, a mission statement, and a bit longer

text telling visitors about the company’s history. I’m going to add some of these elements to the Tekmo

app by placing a several more Labels within the existing Stack Layout. Listing 5.4 shows the additional

Label elements added. Figure 5.6 then shows the full layout of the About Us page.

Listing 5.4 A heading, mission statement, and company history added to the About Us page

<StackLayout>

 <Label textWrap="true" text="About Us" />

 <Label textWrap="true" text="Tekmo is a small online retailer..." /> #A

 <Label textWrap="true" text="Our Mission" /> #A

 <Label textWrap="true" text="We exist to..." /> #A

</StackLayout>

#A Text has been truncated, but shown in figure 5.5

Figure 5.6 The About Us page showing general information about Tekmo and the Tekmo mission.

Now that I’ve added more text to the About Us page, the Tekmo app is really starting to come together.

But wait. There’s something subtle that is easily overlooked. Looking at the bottom of the About Us page

(figure 5.7), you’ll notice that some of the text is now scrolling off the bottom of the screen.

 Branstein / The NativeScript Book 93

Figure 5.7 The text on the About Us page scrolls off the bottom of the screen.

In chapter 4, you learned how to account for text scrolling off the page horizontally by using the

textWrap"="true" attribute of the Label element, but now text is scrolling off the page vertically. Let’s

learn how to fix this problem.

5.2.2 Scrolling pages

On mobile devices, when screen contents scroll off the bottom of the screen, your natural inclination is to

swipe the screen and move the content. But wait: if you try to swipe the screen on the Tekmo app’s About

Us page, nothing will happen. By default, NativeScript pages do not allow you to swipe and scroll content.

To enable scrolling, you’ll need to use the Scroll View UI element.

TIP To allow page content to be scrollable, add a Scroll View to a page.

Scroll Views are like layouts because they aren’t displayed on a page and they are container objects.

Listing 5.5 and figure 5.8 show the Scroll View in action on the About Us page of the Tekmo app.

Listing 5.5 About Us page with a Scroll View, to allow its contents to scroll by swiping the screen

<Page>

 <ScrollView> #A

 <StackLayout> #B

 ... #B

 </StackLayout> #B

 </ScrollView>

</StackLayout>

#A The Scroll View is the first UI element on the page

#B Scrollable UI code goes here, starting with our layout container and the contents

 Branstein / The NativeScript Book 94

Figure 5.8 Adding a Scroll View to the Home page allows users to scroll to the bottom of the page’s content by swiping.

To make a page’s content scrollable, the Scroll View elements should be the first element added to a

page. Inside of the Scroll View, you should place the Stack Layout and its nested elements. As shown in

figure 5.8, once the Scroll View is added, you can use your finger to swipe and scroll page content.

TIP Pay attention to user experience when adding scrollable content to an app! Don’t scroll a subset of

your page on smaller screen devices. Don’t scroll everything (unless you should) on larger tablets. If

you want to read more about UI and app experience design, check out the iOS Human Interface

Guidelines at https://developer.apple.com/ios/human-interface-guidelines or Android’s Design Guide

at https://developer.android.com/design.

When you add a Scroll View to a page, you do not have to place the Scroll View at the very top of the

page. In fact, it’s possible to place a Scroll View around a portion of your page’s content. For example,

imagine you have a page designed like a news article, as seen in figure 5.8. The page has a large heading

at top taking up about 50% of the total screen height. The remaining 50% of the screen contains the

article text.

 Branstein / The NativeScript Book 95

Figure 5.9 A news article-like page with a large headline taking up 50% of the vertical space.

On this page, you could place a Scroll View around the entire page or around the article text. But which

choice is right? There may not be a right choice, but I recommend making the entire page scrollable.

Why? My answer comes from more feeling than logic. Mobile apps are about good user experience, and I

believe that if I were to only make the article text scrollable, it would make my finger swipe gestures feel

restricted, especially on smaller phones. When scrolling, I typically like to make broad sweeping strokes,

or moderately long, quick flicks with my finger. If the scrollable space is too small, broader strokes won’t

feel natural. So, on smaller screens, it makes sense to scroll the entire page.

But what about a larger tablet screen? On a tablet, the article headline takes up less vertical space

because of the larger screen size, leaving more room for the article text. Because there is more room for

the article text, I would scroll only the text, leaving the headline on the page at all times.

Keep in mind, there’s no right or wrong answer about where and how to use the Scroll View. However,

it’s not uncommon to change how you use a Scroll View on a page once you’ve tested your app on a real

device.

 Branstein / The NativeScript Book 96

TIP Test your app on a physical device. That’s the only way you’ll be able to tell if your design choices

work.

TIP Don’t be the only person to test your app on a physical device. As the app’s developer, you’ll miss

subtleties that your friends or colleagues will notice immediately. Install your app on a friend’s phone

or pass your phone around the office to elicit feedback.

Now that you’ve learned how to add text to a page, wrap the text to multiple lines, and ensure your

page’s content is scrollable, you may think the page is plain. Well, sorry to break it to you, it is. But, don’t

worry. You’ll learn how to style the page differently in a later chapter.

Just in case you haven’t been able to follow along, listing 5.6 contains the complete code for the About

Us page (with long lines truncated).

Listing 5.6 Complete About Us page code for the Tekmo app

<Page>

 <ScrollView>

 <StackLayout>

 <Label text="About Us" />

 <Label textWrap="true" text="Tekmo is a small online..." />

 <Label text="Our Mission" />

 <Label textWrap="true" text="We exist to bring..." />

 <Label text="History" />

 <Label textWrap="true" text="In the early 90's, it all..." />

 <Label textWrap="true" text="After Rescue Pups, it was..." />

 <Label textWrap="true" text="As we grew older, the games..." />

 <Label textWrap="true" text="After many year, we all started..." />

 <Label textWrap="true" text="We remembered how cool it was to..." />

 <Label textWrap="true" text="And then there was Vampire..." />

 <Label textWrap="true" text="Lastly, Super Marshmallow Man..." />

 </StackLayout>

 </ScrollView>

</Page>

5.2.3 Using textboxes and providing feedback to users

The next page of the Tekmo app I’ll work on is the Contact Us page. In HTML applications, Contact Us

pages allow visitors to send a message or request additional information. In this section, you’ll learn how

to use textboxes and buttons to create a UI for users to contact Tekmo via the app.

Let’s begin and add the Contact Us page to the Tekmo app by creating a folder beneath the app’s

views folder named contact-us. Figure 5.10 shows this folder with the corresponding XML and

JavaScript page files.

 Branstein / The NativeScript Book 97

Figure 5.10 The app structure of the Tekmo app, after adding a Contact Us page to the views folder.

Before I start to add textboxes and buttons to the Contact Us page, let’s review the XML code in listing

5.7. Now that you’ve learned about the Scroll View, Stack Layout, and Label elements, I’ve added them

to the page.

Listing 5.7 Contact Us page with a ScrollView added

<Page>

 <ScrollView>

 <StackLayout>

 <Label textWrap="true" text="Contact us by submitting a

 message below." />

 </StackLayout>

 </ScrollView>

</Page>

On the Contact Us page, I want to allow users to enter a message subject and message body. Once

they’ve entered this information, they should be able to submit the message to Tekmo by pressing a

button.

ADDING TEXTBOXES TO THE CONTACT US PAGE

Just as in HTML applications, NativeScript apps have textbox UI elements called Text Fields and Text

Views.

DEFINITION A Text Field is a single-line textbox, like an HTML input element with type="text".

To add a Text Field to a page, you use the <TextField /> XML element.

DEFINITION A Text View is a multi-line textbox, like an HTML textarea element. To add a Text View

to a page, you use the <TextView /> XML element.

As you’re planning your UI, it’s important to know ahead of time if the textbox you’d like to show

should be a single line or multiple lines. The Contact Us page will use both a Text Field and a Text View,

as shown in listing 5.8 and figure 5.11.

 Listing 5.8 Contact Us page with a Text Field and Text View added

 Branstein / The NativeScript Book 98

<StackLayout>

 <Label textWrap"="true" text"="Contact us by submitting a message

 below." />

 <Label text"="Subject" /> #A

 <TextField /> #B

 <Label text"="Body" /> #A

 <TextView /> #C

</StackLayout>

#A You should add descriptive text before each textbox so users know what to place in each textbox

#B The single-line textbox for the message subject

#C The multi-line textbox for the message body

Figure 5.11 The Contact Us page with a message subject and body using a single-line Text Field for the subject and a

multi-line Text View for the body.

When you add Text Fields and Text Views to your app, you should tell your users the purpose of each.

One way of doing this is to place a label near the textbox. In listing 5.8, I placed a Label above each

textbox to let my users know the first textbox should be used to enter the subject of the message, and

the second textbox should be used to enter the body of the message.

Although placing Labels near a textbox can be an effective way of communicating the intent of the

textbox, this approach can be ineffective (especially on iOS). On the iOS platform, the textboxes do not

have any visual cues to tell the user a text box exists. Take figure 5.12 as an example: can you tell there

is a textbox below the Subject and Body Labels? I can’t either!

 Branstein / The NativeScript Book 99

Figure 5.12 The Contact Us page with arrows pointing out the textboxes foe Subject and Body. It’s impossible to see

because the textboxes have no visual cues letting you know they’re there.

Because it may be difficult to see textboxes on the screen, I am very purposeful in how I identify

textboxes. My preferred method of describing the purpose of a textbox is to use a hint, as shown in figure

5.13.

Figure 5.13 Comparison of two pages with and without a hint. The page on the left does not have hints, and the page

on the right does. Hints provide context to users on what type (or format) of data you’d like entered into a textbox.

 Branstein / The NativeScript Book 100

DEFINITION A hint is a way of telling NativeScript to temporarily place text inside a textbox, as long

as a user hasn’t typed text into the textbox. For example, if a textbox hint is "Enter a subject," the text

"Enter a subject" will appear in the empty textbox. When you tap textbox to enter text, the temporary

text "Enter a subject" disappears, allowing you to type. Entering text into the textbox will remove the

temporary text. Deleting all of the text you entered into the textbox will once again display the

temporary text, "Enter a subject." To set a textbox hint, add a hint attribute to a TextField or TextView:

<TextField hint"="Enter a subject" /> or <TextView hint"="Enter a message"

/>.

TIP Hints are a subtle way of making an app more useable. Two common uses for hints are describing

what should be entered into a textbox (for example, "Enter a subject") and describing the expected

formatting of the text entered into the textbox (for example, "name@domain.com" for an email

address).

TIP If you use a hint effectively, you can often remove descriptive labels from your UI. By doing so, an

app may look less cluttered and more visually appealing.

Hints can be powerful UI additions that not only make your pages easier to use, but also more visually

appealing. Yes, "visually appealing" is completely subjective, but I’d rather use an app that dictates and

guides me through using it properly and efficiently than guess where and how to enter data.

Because it’s a good idea, I’m going to add hints to the Contact Us page of the Tekmo app. Listing 5.9

and figure 5.14 show how I use hints to give app users information on what should be entered into the

subject and body textboxes. I also removed the descriptive Label elements above each textbox, because

the hints provide enough content to the user.

Listing 5.9 Contact Us page using hints instead of descriptive labels

<StackLayout>

 <Label textWrap="true" text"="Contact us by submitting a

 message below." />

 <TextField hint="Enter the subject..." /> #A

 <TextView hint="Enter the message..." /> #A

</StackLayout>

#A Hints can provide a way of giving users information on the expected purpose of textboxes, while also allowing

you to remove descriptive labels

 Branstein / The NativeScript Book 101

Figure 5.14 The Contact Us page with descriptive labels removed. The hints provide enough information for the user to

understand the purpose of each textbox without the labels.

Although you’ve learned about the basics of a Text Fields and Text Views, there are many more

properties like the hint property that are at your disposal as a NativeScript developer. I can’t cover them

all in this chapter, but you will learn more about these textboxes throughout the book. If you want to

learn more now, read through the detailed API documentation at https://nativescript.org.

ADDING A SUBMIT BUTTON TO THE CONTACT US PAGE AND PROVIDING USER FEEDBACK

After a user enters a message subject and body into the textboxes on the Contact Us page, it’s customary

to provide a way for the users to actually send the information to you. Just as most HTML applications

allow you to submit information by pressing a button, I want users of the Tekmo app to submit their

message by pressing a submit Button within the app. In listing 5.10 and figure 5.15, I’ve added a Button

to the Stack Layout.

Listing 5.10 Adding a Button to the Contact Us page to submit the message subject and body

<StackLayout>

 <Label textWrap="true" text="Contact us by submitting a

 message below." />

 <TextField hint="Enter the subject..." />

 <TextView hint="Enter the message..." />

 <Button text="Submit" tap="onTap" /> #A

</StackLayout>

#A When you tap the Submit Button, a function named "onTap" will be invoked by NativeScript.

 Branstein / The NativeScript Book 102

Figure 5.15 The Contact Us page, complete with a Button to submit the message to Tekmo.

You’ve already learned about Buttons and a Button’s tap event in chapter 4, so you should recognize

the tap event handler definition in listing 5.11. What you may not be familiar with yet is the body of the

onTap() function. Ideally, I would send the entered information to Tekmo via email or by sending a

message to a server, but I’m going to purposefully skip the "send" part. I’ll revisit sending data and

messages in a future chapter, so you won’t miss out. But for now, I’ll assume the message was sent, and

notify the user it was sent successfully. Let’s take a closer look at it together in listing 5.11.

Listing 5.11 Providing feedback to the user when the Submit Button is tapped

var dialogsModule = require("ui/dialogs"); #A

function onTap(args) {

 console.log("submit button tapped"); #B

 dialogsModule.alert("Your message has been sent."); #C

}

exports.onTap = onTap;

#A To provide the user with feedback that the button has been tapped, load the "ui/dialogs" module, which

contains an alert dialog to display a message to the user.

#B In your first several apps, it’s a good idea to leave yourself a trail of bread crumbs to debug a misbehaving

app. Logging a message to the console is an easy way to do this.

#C Provide visual feedback to the user by displaying an alert dialog with a customized message. If we had

incorporated code to send an email or message to a server, it would appear directly prior to this alert.

TIP You may have noticed the onTap() event handler function name isn’t very descriptive. We

recommend using a naming convention like onSubmitTap() so your code is more readable.

 Branstein / The NativeScript Book 103

Although you’ve seen the tap event handler before, I’ve introduced several new concepts. There is a

lot going on, but don’t panic. Let’s unwrap it by starting at the first line of the onTap function, then we’ll

go back to the top and learn about the new module I introduced.

The first line of the onTap function references a variable named console. At first glance, you may be

confused because nowhere in my code did I declare the console variable. Well, you’re right, I didn’t declare

the console variable. However, that’s OK because console is a global NativeScript variable. Let me explain.

When you’re developing a NativeScript app (or any app), it’s usually a good idea to instrument your

app by leaving behind diagnostic messages (or bread crumbs). By doing so, you can re-trace your steps

when something goes wrong. NativeScript provides a specialized module named Console, that provides

you with ways to output diagnostic data and message to the Android emulator and iOS simulator.

NOTE When you’re running your app in the Android emulator and iOS simulator, messages and data

logged with the console module are displayed to the terminal or command prompt.

As you learned in chapter 4, to use a NativeScript module, you need to import it using the require()

syntax. However, because you will use the console module on almost every page, NativeScript

automatically loads it on your behalf into a global variable named console.

TIP Use the Console module extensively to instrument your app by outputting messages and key

events. Even if you don’t think you’ll need the information, I guarantee you’ll thank yourself in the

future when you’re trying to debug your app.

Now that you understand the purpose of the Console module, the first line of the onTap function is

clearer. I’m using the Console module to log a diagnostic message to the emulator/simulator.

Let’s look back at the other new module I introduced on the first line of listing 5.11: var

dialogsModule = require("ui/dialogs"). This command imports the Dialogs module.

DEFINITION The Dialog module gives you a collection of Dialogs that provide visual feedback to users,

typically in response to them performing an action. Although there are many different types of Dialogs

that look and act in different ways, all Dialogs have three things in common when displayed on the

screen: a heading (or title), a message, and one (or more) buttons prompting the user to acknowledge

the message, close the Dialog, or perform another action.

DEFINITION An alert Dialog is a type of Dialog that displays a simple message and single button.

Pressing the button closes the alert. Alert Dialogs are akin to a JavaScript alert() message in HTML

applications.

With a better understanding of the Dialog module, you can understand how

dialogsModule.alert("..."); displays a Dialog alerting the user that their message has been sent

to Tekmo. Figure 5.16 shows how an alert Dialog is displayed to the user, providing visual feedback when

the Submit Button is tapped.

 Branstein / The NativeScript Book 104

Figure 5.16 A dialog is displayed to the user after the Submit Button is tapped, alerting them that their message has

been sent.

TIP Providing users with feedback when they interact with an app is an important aspect of mobile app

development. There are many ways of providing feedback to a user within a mobile app: sounds,

vibration, and visually.

At times, certain forms of user feedback will work better than others. In this book, I won’t go into

detail on which form of user feedback is best (and why). However, I do feel compelled to teach you that

providing feedback to users is incredibly important. Later in the book, you’ll learn about other facets of

the Dialog module, and several other mechanisms for providing feedback to users. Stay tuned!

 Branstein / The NativeScript Book 105

COMPLETE CODE LISTING FOR THE CONTACT US PAGE

I’ve finished adding UI elements and JavaScript code to the Contact Us page of the Tekmo app. In case

you haven’t been able to follow along, listings 5.12 and 5.13 include the complete XML and JavaScript

code for the Contact Us page.

Listing 5.12 Complete XML code listing for the Contact Us page

<Page>

 <StackLayout>

 <Label textWrap"="true" text"="Contact us by submitting a

 message below." />

 <TextField hint"="Enter the subject..." />

 <TextView hint"="Enter the message..." />

 <Button text"="Submit" tap"="onTap" />

 </StackLayout>

 </Page>

Listing 5.13 Complete JavaScript code listing for the Contact Us page

var dialogsModule = require("ui/dialogs");

function onTap(args) {

 console.log("submit button tapped");

 dialogsModule.alert("Your message has been sent.");

}

exports.onTap = onTap;

Now that you’ve mastered the Stack Layout, you’re ready for some more advanced layout techniques.

In chapter 6, you’ll continue to learn about layout containers. I’ll also continue to build upon the Tekmo

app, so keep reading!

PLAY Check out this chapter’s final code in the Playground at

https://play.nativescript.org/?template=play-js&id=89ootX&v=19.

5.3 Summary

In this chapter, you learned that:

▪ Stack Layouts allow you to organize UI elements by stacking them on top of each other

▪ Although Text Fields and Text Views are both textboxes, Text Fields are single-line textboxes and

Text Views are multi-line text boxes

▪ A Scroll View can be used to add a scroll bar to a page’s UI.

▪ To debug your app, you should use the Console module to log messages and data to the terminal

or command prompt.

5.4 Exercise

In this chapter, you learned how to organize UI elements on the screen with various layouts. Try using

what you’ve learned to do the following:

 Branstein / The NativeScript Book 106

▪ Using a Stack Layout, place three paragraphs of text on a page. Don’t let the text scroll off the side

of the page.

▪ Enable scrolling on the page you created in the previous exercise step.

▪ Using the page you created in the previous exercise steps, display a Dialog alert when the page is

loaded.

5.5 Solutions

To place three paragraphs of text on a page within a Stack Layout while ensuing the text does not scroll

off the side of the page, use the code listed in listing 5.14.

Listing 5.14 Solution to placing three paragraphs of text within a Stack Layout

<StackLayout>

 <Label textWrap"="true" text"="paragraph 1 goes here" />

 <Label textWrap"="true" text"="paragraph 2 goes here" />

 <Label textWrap"="true" text"="paragraph 3 goes here" />

</StackLayout>

To enable scrolling for the previous exercise, nest the Stack Layout element beneath a <ScrollView>

element.

To display a Dialog alert when the page is loaded, add "loaded="onLoaded" to the Page element,

then add JavaScript to the onLoaded() function of the page in the page’s .js file. Listing 5.15 shows a

complete solution for the page XML of all exercises.

Listing 5.15 Complete solution with three stacked paragraphs of text, scrolling enabled, and

loading event wired to the onLoaded() JavaScript function

<Page loaded"="onLoaded">

 <ScrollView>

 <StackLayout>

 <Label textWrap"="true" text"="paragraph 1 goes here" />

 <Label textWrap"="true" text"="paragraph 2 goes here" />

 <Label textWrap"="true" text"="paragraph 3 goes here" />

 </StackLayout>

 </ScrollView>

</Page>

Listing 5.16 shows the corresponding page’s .js file contents to display the Dialog alert upon page

load.

Listing 5.16 JavaScript file contents to display a Dialog alert upon page load

var dialogsModule = require("ui/dialogs");

function onLoaded(args) {

 dialogsModule.alert("Page loaded.");

}

exports.onLoaded = onLoaded;

 Branstein / The NativeScript Book 107

 Branstein / The NativeScript Book 108

6
Using advanced layouts

This chapter covers

• How to organize your app user interface (UI) with the grid layout

• How layout containers can be nested underneath each other to make more advanced UI designs

• How a grid layout can be used to create uniformly-sized rows and columns

• The three different ways in which you can specify the size (width and height) of grid layout rows

and columns

In Chapter 5, you learned about the stack layout and how it allows you to stack UI components on top of

each other. This layout is a foundational layout container that will appear every app you write; however,

it is limited. In this chapter, you will be introduced to an additional layout: the grid layout. After you’ve

learned about the grid layout, you’ll be able to construct more advanced and complex UI designs. In fact,

with just the stack and grid layouts, you’ll be able to create pretty much any UI. That may seem to be a

stretch, but in our experience, we’ve been able to construct about 95% of our app layouts by using these

two layouts.

NOTE The grid layout isn’t the only advanced layout container. There’s wrap, dock, absolute, and

flexbox layouts to name a few. If you’re coming from a web background, you likely will have used flexbox

layout – it’s a favorite among many our co-workers. If you’d like to learn more about these other layouts,

check out https://docs.nativescript.org/ui/layouts/layouts.

6.1 Introducing the grid layout

Imagine you are developing a mobile app with a series of labels and text fields arranged in a series of

rows and column. The profile page in figure 6.1 shows an example of one such UI.

 Branstein / The NativeScript Book 109

Figure 6.1 A mobile app profile page with labels and textboxes organized in rows and columns.

With the stack layout, you already know how to create a UI with various elements stacked on top of

each other, but stack layouts aren’t the right choice for UIs that can easily conform to a grid. The grid

layout is a perfect fit!

DEFINITION The grid layout is a layout container with the ability to organize UI elements into a

collection of rows and columns.

Listing 6.1 shows the XML code used to display a grid layout on the screen.

Listing 6.1 Adding a grid layout to a page

<Page>

 <GridLayout rows=”*,*,*” columns=”*,*” #A

 width=”300” height=”450”> #B

 ... #C

 </GridLayout>

</Page>

#A This creates a grid layout with three rows and two columns. Don’t worry about the rows and columns syntax

right now, I’ll cover that later.

#B The grid is forced to 300 pixels wide by 450 pixels tall

#C Nested UI controls go here.

To add a grid layout to a page, you add the <GridLayout rows=”...” columns=”...”> element.

You will also notice the width=”300” and height=”450” properties. You haven’t learned about these

properties yet, but they are named well and self-explanatory. Width and height describe their exact

purpose: to set the layout’s width and height to a given number of pixels.

 As you can see, the grid layout element syntax is simple; however, when you define the layout, you

also need to include the rows and columns properties.

DEFINITION The rows and columns properties of the grid layout define the number of rows and columns

within the layout container.

 Branstein / The NativeScript Book 110

In listing 6.1, we created a grid layout with three rows and two columns. You can tell this by looking

at the number of comma-separated values within each of the properties. The rows property has three

comma-separated values (rows=”*,*,*”), meaning the grid layout has three rows. The columns

property has two comma-separated values (columns=”*,*”), meaning the grid layout has two rows.

Right now, it’s not important that you understand what these comma-separated values mean. We’ll cover

that later in this chapter. Instead, just remember that for each comma-separated value, there is a row or

column.

6.2 Adding content to a grid layout

In the previous section, you learned how to create a grid layout with three rows and two columns. Before

we teach you how to organize UI element inside a grid layout, let’s visualize a grid three rows tall and 2

columns wide (figure 6.2).

Figure 6.2 A grid consisting of 3 rows and 2 columns.

 Branstein / The NativeScript Book 111

A grid layout of three rows and two columns has a total of six cells, with cell coordinates of (0, 0), (0,

1), (1, 0), (1, 1), (2, 0), and (2, 1).

DEFINITION A cell refers to the intersection of a specific row and column within a grid. cells are the

natural byproduct of creating a grid. The cell terminology is not specific to NativeScript, but instead a

universally accepted term when speaking about a particular row and column of a grid. Just like pixels

on a screen, cells can be referred to using a coordinate notation (row #, column #). Using this notation,

a grid with two rows and two columns, there are a total of four cells: the upper left cell (0, 0), the

upper right cell (0, 1), the lower left cell (1, 0), and the lower right cell (1, 1).

As you learn how to add UI elements to a grid layout, be sure to keep the cell coordinates of each cell

in our 3 x 2 grid in mind.

Just like the stack layout, the grid layout is a container, meaning UI elements nested inside of the

layout are governed by the rules of the layout. The grid layout’s rules are easy to remember because

there is only one rule: each UI element must identify the cell in which the component will should appear.

6.2.1 Adding a single UI component to a grid cell

Using this rule, let’s add a products page to the Tekmo app, then add a grid layout to the page. You’ll

recall from an earlier chapter that a page consists of an XML, JavaScript, and CSS file. For now, we’re just

going to add the XML file, naming it products.xml. Place the products.xml page into the views/products

folder of your app, as shown in figure 6.3.

Figure 6.3 The products.xml file has been added to the views/products folder of the Tekmo app

Once we’re finished with the products page, it will display the six vintage video games Tekmo sells:

Couch Commander, Mummy Madness, Pyro Robots, Rescue Pups, Super Marshmallow Man, and Vampire

Valkyrie. Let’s start by adding a Page and GridLayout element to the products.xml file. The grid will be 3

x 2 (three rows by two columns). In each grid cell, we’ll place a Label element, representing each game’s

title (listing 6.2 and figure 6.4).

Listing 6.2 A three-row by two-column grid layout with a label in each cell

<Page>

 Branstein / The NativeScript Book 112

 <GridLayout rows=”*,*,*” columns=”*,*” width=”300” height=”450”>

 <Label row=”0” col=”0” text=”Couch Commander” textWrap=”true” #A

 style=”background-color: #CCCCCC” /> #A

 <Label row=”0” col=”1” text=”Mummy Madness” textWrap=”true” #A

 style=”background-color: #EEEEEE” /> #A

 <Label row=”1” col=”0” text=”Pyro Robots” textWrap=”true” #A

 style=”background-color: #EEEEEE” /> #A

 <Label row=”1” col=”1” text=”Rescue Pups” textWrap=”true” #A

 style=”background-color: #CCCCCC” /> #A

 <Label row=”2” col=”0” text=”Super Marshmallow Man” #A

 textWrap=”true” style=”background-color: #CCCCCC” /> #A

 <Label row=”2” col=”1” text=”Vampire Valkyrie” textWrap=”true” #A

 style=”background-color: #EEEEEE” /> #A

 </GridLayout>

</Page>

#A Each cell has a Label contained within. A row and col property are added to each Label to tell the GridLayout

where to place the component. Grid cell coordinates are always zero-based numbers.

Figure 6.4 A grid layout with a Label in each cell. The Label text indicates the grid cell coordinate at which the Label is

placed. Note that each cell has been shaded to better visualize the boundaries.

 Branstein / The NativeScript Book 113

When adding a UI element to a grid layout, you must specify the grid cell coordinates at which the

component will be placed. This is done by adding a row=”row #” and col=”column #” property to the

component. Listing 6.2 shows six Label elements added to the grid layout. To place the Mummy Madness

label in the first row and second column (grid cell coordinates 0, 1), you add row=”0” and col=”1” to

the Label XML element.

WARNING Grid cell coordinates are always zero-based, meaning (0, 0) refers to the first row and first

column. This can be confusing if you’re not used to thinking in zero-based numbers or are used to

programming in a language that doesn’t use zero-based indexes. Watch out!

You may have noticed the style=”background-color: ...” attribute added to each label in listing

6.2. It looks just like an HTML tag for a CSS style property to change the background color of each grid

cell. Well, that’s exactly what it does. But wait, this isn’t HTML, it’s NativeScript! We’re not really ready to

talk about CSS yet, so we’re going to skip by the details (and explanation) right now. Don’t worry, though.

We’ll cover this in the next chapter extensively. For now, just ignore the style attributes.

6.2.2 Adding multiple UI elements to a grid cell

In some circumstances, adding a single UI control to a grid cell is sufficient. Complex UIs may call for you

to add two, three, or even more components into a cell. For example, what if we wanted to add an image

and price for each game displayed on the Tekmo product page? At first, you may think to add these

additional components to the grid layout and give them each a row and column value. Unfortunately, this

won’t work. But why?

WARNING You can assign only a single UI component to a grid cell.

Although we haven’t specifically pointed out how to add multiple items to a grid cell, you’ve already

learned everything you need to know. Back in chapter 5, you learned how a stack layout can be used to

add multiple UI elements to a page. Stack layouts (and other layouts) are just UI elements that allow you

to organize other UI elements on the screen.

Let’s get back to the original question, “How do you add multiple UI components to a grid cell?” The

answer is to use another layout container (like a stack layout) in each grid cell.

TIP To add multiple UI elements into a grid cell, use another layout container.

Let’s apply what you just learned about nesting layout containers and modify the Tekmo app’s products

page. In listing 6.3 and figure 6.5, we’ve added an image and price for each product to the grid layout.

 Listing 6.3 Using nested layouts to add multiple components to a grid cell

<GridLayout rows=”*,*,*” columns=”*,*” width=”300” #A

 height=”450”> #A

 <StackLayout row=”0” col=”0” style=”background-color: #CCCCCC”> #B

 <Label text=”Couch Commander” textWrap=”true” /> #C

 <Image src=”res://couchcommander” width=”75” height=”75” /> #C

 Branstein / The NativeScript Book 114

 <Label text=”$24.99” /> #C

 </StackLayout>

 <StackLayout row=”0” col=”1” style=”background-color: #EEEEEE”>

 <Label text=”Mummy Madness” textWrap=”true” />

 <Image src=”res://mummymadness” width=”75” height=”75” />

 <Label text=”$32.99” />

 </StackLayout>

 ... #D

</GridLayout>

#A The GridLayout definition doesn’t change when nesting multiple components

#B A nested layout is added with the row=”0” and col=”0” properties previously included on the Label

#C Note the components nested under the Stack Layout do not need a row and col property definition because

the Stack Layout has already defined the values

#D Remaining grid cell component definitions go here, following the same pattern

Figure 6.5 A nested stack layout has been added to the grid layout. The video game title, image, and price were then

added to the stack layout, allowing all three components to be included within a grid cell.

There’s a lot going on in the product page’s XML code, so we’ll break it down step by step, starting

with the GridLayout element. When changing this code to include multiple components per grid cell, the

element for the grid layout doesn’t change.

 Branstein / The NativeScript Book 115

Beneath the grid layout we added a series of stack layout elements. You’ll recall from earlier in this

chapter that the tip for including multiple components within a grid cell is to nest another layout container

inside of the grid layout. The <StackLayout row=”0” col=”0”> XML code is our first nested layout.

Within the element’s opening tag, you’ll see the location within the grid has been identified by including

row=”0” and col=”0”. This particular stack layout will be in the first row and first column.

The next several lines of XML code in listing 6.3 are the product title, image, and price. The code used

for the title and price should look familiar because you’ve already learned about labels. But, there is a

subtle change we made to each of the title Label elements. Take the Couch Commander title as an

example. Before adding the nested stack layouts, the title label was <Label text=”Couch Commander”

textWrap=”true” row=”0” col=”0” />. Afterward, the label was <Label text=”Couch

Commander” textWrap=”true” />. When I moved the label inside of the Stack Layout, I removed

the row=”0” and col=”0” properties and placed them on the Stack Layout element. Why?

NOTE The grid layout allows you to have only one nested XML element assigned to each grid cell.

When you nest another layout container beneath a grid layout, the nested layout is the only XML

element that needs to be assigned to a grid cell with the row and col properties. Child elements of the

nested layout do not need to specify these properties.

The final pieces of code we want to highlight in listing 6.3 are the image elements within each stack

layout. For example, the Couch Commander image element is <Image src=”res://couch-

commander” width=”75” height=”75” />. Although you haven’t learned about the image element

yet, you can probably guess what it does.

DEFINITION The image element displays an image on the screen. You can set the width and height of

the displayed image with using the width and height attributes.

Right now, we don’t want to explain images in detail, so just remember that Image elements display

a product image on the screen when the app runs. We will be going into the Image element in more detail

in a later chapter.

6.2.3 Spanning UI elements across multiple rows and columns

So far, you’ve learned how to display UI elements within grid cells, but each element occupied a single

grid cell. It’s possible for UI elements to occupy multiple grid cells at a time. Let’s take the Tekmo Product

page as an example. The current page has a grid of six products (figure 6.6), with each product occupying

a single grid cell.

 Branstein / The NativeScript Book 116

Figure 6.6 Tekmo’s product listing, with each of the six products occupying a single grid cell.

Suppose Tekmo wanted to promote a product and have the product’s title, image, price, and a brief

description of the product displayed more prominently? Wouldn’t it be nice to take a featured product and

stretch its content across the entire first row of the grid? You can stretch elements across rows and

columns, and it’s called spanning.

DEFINITION Spanning refers to extending a UI element across multiple rows and columns. The span

of a UI element refers to the number of grid cells (rows and columns) the element occupies. UI elements

can independently span any number of rows and column within a Grid Layout. By default, their span is

a single row and column.

Spanning an element is easy, and uses the rowSpan and colSpan properties to define the number

of rows and columns an element occupies. Listing 6.4 and figure 6.7 show how the Super Marshmallow

Man game is featured on the product page by spanning it across the first row.

Listing 6.4 Featuring a product by spanning it across multiple grid layout columns

<GridLayout rows=”*,*,*,*” columns=”*,*” width=”300” #A

 height=”600”> #A

 Branstein / The NativeScript Book 117

 <StackLayout row=”0” col=”0” rowSpan=”1” colSpan=”2” #B

 style=”background-color: #DDDDDD” > #B

 <Label text=”Super Marshmallow Man” textWrap=”true” /> #C

 <Image src=”res://super-marshmallow-man” #C

 width=”75” height=”75” /> #C

 <Label text=”Escape from certain death in...” /> #C

 <Label text=”On Sale! $14.99” /> #C

 </StackLayout>

 <StackLayout row=”1” col=”0” style=”background-color: #CCCCCC”> #D

 <Label text=”Couch Commander” textWrap=”true” #D

 width=”75” height=”75” /> #D

 <Image src=”res://couch-commander” /> #D

 <Label text=”$24.99” /> #D

 </StackLayout> #D

 <StackLayout row=”1” col=”1” style=”background-color: #EEEEEE”> #D

 <Label text=”Mummy Madness” textWrap=”true” /> #D

 <Image src=”res://mummy-madness” #D

 width=”75” height=”75” /> #D

 <Label text=”$32.99” /> #D

 </StackLayout> #D

 ... #E

</GridLayout>

#A When one of the products is featured, it will occupy an entire row, requiring four rows of product to display

everything. Notice the additional row in the rows property.

#B Starting at grid cell (0, 0), this element spans one row and two columns

#C Additional content is added to highlight the featured product

#D The remaining product row and col properties are adjusted to account for the first product occupying more

space

#E The remaining products go here

Figure 6.7 The Super Marshmallow Man game has been featured and spans two columns in the first row.

 Branstein / The NativeScript Book 118

Spanning UI elements across multiple rows and columns is easy. On the product page, the Super

Marshmallow Man game has been featured by spanning it across two columns. When the Super

Marshmallow Man’s stack layout is spanned across two columns, the row=”0” and col=”0” properties

indicate that the UI element should start at the first row and first column. From that starting point, the

element should span one row and two columns, as defined by rowSpan=”1” and colSpan=”2”.

WARNING When you first start spanning UI elements across multiple rows and columns, it may be

easy to mentally visualize where different elements are displayed. But this can quickly become

confusing when you have multiple sets of elements separately spanning rows and columns. If you get

confused, don’t panic. Put your keyboard down and pick up your pencil and paper. Draw a grid with the

same number of rows and columns within your app and lay out your UI elements by hand. Later in this

chapter, we’ll give you more tips on how to plan your UI. Just remember that simple and low-tech can

be powerful allies.

6.3 Controlling grid layout rows and columns

Throughout this chapter, we’ve purposefully shied away from teaching you how to specify the number of

rows and columns in a grid layout. Now that you know the basics of organizing UI elements with the row

and col properties, it’s time to dig into this topic. But, before we jump in, we want to let you know that

specifying the number of rows and columns can be confusing. We’ll take it slow, and give you examples

along the way, so be patient.

Let’s revisit the basic row and column definition syntax you’ve already seen. For example, a grid layout

defined with <GridLayout rows=”*,*,*,*” columns=”*,*”> has four rows and two columns

because each comma-separated value within the rows and columns properties corresponds to a discrete

row or column. Said in another way, the number of comma-separated values is the number of rows or

columns.

TIP To add rows or columns to a grid layout, add comma-separated values to the rows or columns

property. A grid layout with 4 rows will have 4 comma-separated values: rows=”*,*,*,*”. If you

remove a comma-separated value, the grid layout will have 3 rows: rows=”*,*,*”.

That’s not too confusing, right? If this were the only thing the rows and columns properties did, I’d be

right. But, you’ve only learned half of what the rows and columns properties control. In addition to

specifying the number of rows and columns, these properties also describe the size (width and height) of

each row and column.

NOTE The comma-separated values of the rows and columns property describe both the number and

size of each row and column.

Each comma-separated value has a special meaning and describes how the size of a row or column is

determined. In the grid layout examples earlier in this, you’ve seen a * value used for each row and

column. The * value is one of three special values that can be used to describe the size of rows and

columns. The other two types of values are an integer and the word auto.

 Branstein / The NativeScript Book 119

These three methods of specifying the size of rows and columns are what can make understanding

grid layouts challenging. But don’t worry because we’ll take it slow and explain each as we use it on the

products page. If you’re in a hurry, and want an abridged course in row and column sizing methods, the

NativeScript documentation is a great resource. You can find the grid layout documentation at

http://docs.nativescript.org/ui/layout-containers#gridlayout.

Let’s get started by looking at table 6.1, which outlines the three sizing methods and how the value is

used to determine the width and height of rows and columns.

Table 6.1 Different methods for specifying the size of a row or column in a grid layout.

Sizing Method Value Description

pixel # of pixels Sets the width and height of a row or column by specifying an exact (or

fixed) number of pixels.

percentage * Distributes rows and columns across all available space in the grid

layout. Available space is proportionately divided across all percentage

rows and columns. Percentage sizing always uses the maximum amount

of space available in a grid layout.

automatic auto Sets the size of rows and columns based on the size of UI elements

within the grid cells. Row height is set to the height of the tallest grid cell

in the row. Column width is set to the width of the widest grid cell in the

column. Automatic sizing uses the minimum amount of space needed by

its contents.

The pixel sizing method is the simplest of the three sizing methods: by specifying an integer as the

sizing value, you can set the height and width of rows and columns. You can check out the official

NativeScript documentation at http://docs.nativescript.org/ui/layout-containers#gridlayout to find out

more.

6.3.1 Understanding percentage sizing in the Tekmo app

When we last updated the Tekmo app, we had added a fourth row to the grid layout so the Super

Marshmallow Man game could be highlighted at the top of the page (listing 6.5).

Listing 6.5 Products page with four rows, highlighting Super Marshmallow Man in the first row

<GridLayout rows=”*,*,*,*” columns=”*,*” width=”300” #A

 height=”600”> #A

 <StackLayout row=”0” col=”0” rowSpan=”1” colSpan=”2”

 style=”background-color: #DDDDDD” >

 <Label text=”Super Marshmallow Man” textWrap=”true” />

 <Image src=”res://super-marshmallow-man” />

 <Label text=”Escape from certain death in...” />

 <Label text=”On Sale! $14.99” />

 </StackLayout>

 Branstein / The NativeScript Book 120

 ...

</GridLayout>

#A The grid layout uses percentage sizing for the 4 rows and 2 columns

The grid layout on the products page uses the percentage sizing method for each of the 4 rows and 2

columns. But what does that really mean?

DEFINITION Percentage sizing is a method for determining the size of rows and columns by

proportionately distributing available grid space across each row or column using the method.

WARNING Before we go any further, we want you to know that percentage sizing can be confusing,

because it’s not intuitive (at least to us). We think an intuitive percentage-based sizing syntax would

include percentage signs. For example, rows="25%, 25%, 25%, 25%" to indicate there are 4 rows,

each with 25% of the space. But, that’s not how NativeScript works. Instead, you must use the star

syntax.

Because we feel percentage sizing is confusing, we’ve spent a little more time to carefully explain how

percentage sizing works. We’ve also focused on columns exclusively in this section and purposefully

ignored how percentage sizing applies to rows (because they work identically).

GRID SPACE VERSUS AVAILABLE GRID SPACE

To fully understand percentage sizing, it’s important that you understand the different between grid

space and available grid space. When NativeScript displays a grid on a page, it first determines the total

size the grid can occupy on a page. The total size is referred to as the grid space.

DEFINITION Grid space is the total size a grid occupies on a page.

After the grid space is determined, NativeScript allocates space from the grid space to rows and

columns using the pixel and automatic sizing methods. After these columns have been given a portion of

the grid space, the remaining space is referred to as the available grid space.

DEFINITION Available grid space is the width and height remaining out of the grid space after pixel

and automatic columns have been displayed.

For now, we’ll be using examples where the grid space and available grid space are the same: the

entire width and height of the grid. Later, we’ll incorporate a more complex example.

APPLYING PERCENTAGE SIZING TO THE TEKMO APP

The easiest example of percentage sizing is a grid with a single column, for example columns=”*”.

As you’ve learned, percentage sizing proportionately distributes the percentage columns across the

available grid space. The available grid space is 100%. This results in a single column being 100% of the

grid’s width.

 Branstein / The NativeScript Book 121

Now, let’s look at the Tekmo app’s product page with two columns using percentage sizing:

columns=”*,*”. You’ll also recall the grid layout is set to a width of 300 pixels with the width property:

width=”300”. Based on the columns and width properties, you know the available grid space is 100%,

or 300 pixels. With two percentage-sized columns, each column will receive 50% of the grid’s width, or

150 pixels. Figure 6.8 shows the two product page columns, each consuming 50% of the grid’s width.

Figure 6.8 The product page showing two percentage size columns, each consuming 50% of the grid’s available

column space.

Now that you have a handle on column sizing, let’s translate this to rows. The products page has four

rows and a height of 600 pixels defined in the grid layout: <GridLayout rows=”*,*,*,*”

height=”600”>. The available grid space for rows is 100%, or 600 pixels. With 4 rows, each row will

receive 25% of the grid’s height, or 150 pixels. Figure 6.9 shows how the four rows are evenly sized.

 Branstein / The NativeScript Book 122

Figure 6.9 The product page showing 4 percentage size rows, each consuming 25% of the grid’s available row space,

or 150 pixels.

Tekmo’s product page rows and column sized with the percentage method are basic examples of how

the percentage method works. If you’re interested in more complex scenarios, look at the percentage

sizing deep dive sidebar in this chapter, or check out the NativeScript documentation at

https://docs.nativescript.org/ui/layout-containers#gridlayout.

Percentage sizing deep dive

You’ve already seen basic examples of the percentage sizing, where each column is sized the same,

such as columns=”*,*”. Determining the percentage of the available grid space is easy in these

circumstances, so I didn’t bother to paint the full picture. Here’s what’s really happening. When

 Branstein / The NativeScript Book 123

NativeScript displays a grid layout with columns defined using the percentage sizing convention, the

resulting column width is determined using a calculation.

To calculate the width of columns using the percentage method, NativeScript adds the total number of

stars together, then divides each column’s star count by this total. The resulting dividend in converted

to a percentage. For example, column=”*,*,*” has 3 stars. The first column’s width is calculated

by dividing 1 by 3 and converting the result into a percentage (33.3%). 1 is divided by 3 because there

is 1 star defined for the first column, and a total of 3 stars across all percentage-sized columns. The

same calculation is done for the second and third columns.

Understanding the percentage calculation may seem trivial because you’ve been learning about grids

with equally-sized columns. But, it’s possible for grid columns to be sized differently by placing a number

in front of each *. For example, columns=”2*,*” defines 2 columns, but column 1 (66.6%) is

proportionately twice the size of column 2, which is 33.3%.

Let’s go back to the percentage calculation to understand why the first column is 66.6% and the second

column is 33.3%. You’ll recall the calculation adds the total number of stars in all columns, which is 3

stars (because 2* means 2 stars and 2* + * = 3 stars). Each column’s star count is divided by the total

number of stars and changed to a percentage. This means the first column’s width is 2* (2 stars)

divided by 3* (3 stars) = 66.6% and the second column’s width is * (1 star) divided by 3* (3 stars) =

33.3%.

As you can see, the percentage method’s calculation can get confusing. If you do get confused

bookmark this page, keeping this sidebar as a point of reference.

6.3.2 Using automatic sizing for rows and columns

In the previous section, you learned how the Tekmo app’s products page used the percentage method to

create 4 rows and 2 columns, all of equal width and height. The percentage method is a great choice when

you want multiple columns or rows to be sized proportionately to each other.

What happens when a UI element doesn’t fit just right within the equally sized rows and columns? For

example, let’s take the Super Marshmallow Man game, which is highlighted at the top of the products

page (figure 6.10).

 Branstein / The NativeScript Book 124

Figure 6.10 The products page highlighting the Super Marshmallow Man game at the top of the page.

Right now, the text “Escape from certain death in this wild adventure” fits nicely on 2 lines without

pushing the “On Sale! $14.99” text out of the first grid row. But what if the description was a little longer,

as in figure 6.11.

Figure 6.11 The descriptive text of Super Marshmallow Man is more than 2 lines long, hiding the price.

Ideally, we’d want the row containing Super Marshmallow Man to expand and automatically

accommodate the lengthier text. Unfortunately, it doesn’t because the first row is sized using the

percentage method: rows=”*,*,*,*”, forcing the row to have a height identical to the second, third,

and fourth rows. So, what can we do? Automatic sizing to the rescue!

 Branstein / The NativeScript Book 125

DEFINITION The automatic sizing method sets the size of rows and columns based on the size of UI

elements within the grid cells. Row height is set to the height of the tallest grid cell in the row. Column

width is set to the width of the widest grid cell in the column. Automatic sizing uses the minimum

amount of space needed by its contents.

Automatic sizing is a great solution to my problem because it will automatically increase the size of a

row to accommodate a longer description for Super Marshmallow Man. First, we’ll change the first row’s

sizing method from the percentage to automatic. We’ll do this by changing the rows property of the grid

layout from rows=”*,*,*,*” to rows=”auto,*,*,*”. Because of the automatic row-sizing change we

made, the first row will automatically expand to show the following text added to the description label:

<Label text=”Escape from certain death in this wild adventure! Battle the

forces of evil, but don't melt!” />

Figure 6.12 shows the resulting changes, with a larger first row.

Figure 6.12 The Super Marshmallow Man description has been expanded and the row height set to auto, allowing the

row to automatically increase in height.

We’ve made a lot of changes to the products page throughout this section. If you haven’t been able

to follow along, you can look at listing 6.6 which contains the final version of the products page.

Listing 6.6 Final version of the products page

<Page>

 <GridLayout rows=”auto,*,*,*” columns=”*,*” width=”300”

 height=”600”>

 <StackLayout row=”0” col=”0” rowSpan=”1” colSpan=”2”

 style=”background-color: #DDDDDD” >

 <Label text=”Super Marshmallow Man” textWrap=”true” />

 <Image src=”res://super-marshmallow-man” />

 <Label text=”Escape from certain death in this wild adventure!

 Battle the forces of evil, but don't melt!” textWrap=”true” />

 <Label text=”On Sale! $14.99” />

 Branstein / The NativeScript Book 126

 </StackLayout>

 <StackLayout row="1" col="0" style="background-color: #CCCCCC;">

 <Label text="Couch Commander" textWrap="true" />

 <Image src="res://game" width="75" height="75"

 stretch="aspectFill" />

 <Label text="$24.99" />

 </StackLayout>

 <StackLayout row="1" col="1" style="background-color: #EEEEEE;">

 <Label text="Mummy Madness" textWrap="true" />

 <Image src="res://game" width="75" height="75"

 stretch="aspectFill" />

 <Label text="$32.99" />

 </StackLayout>

 <StackLayout row="2" col="0" style="background-color: #EEEEEE;">

 <Label text="Pyro Robots" textWrap="true" />

 <Image src="res://game" width="75" height="75"

 stretch="aspectFill" />

 <Label text="$19.99" />

 </StackLayout>

 <StackLayout row="2" col="1" style="background-color: #CCCCCC;">

 <Label text="Rescue Pups" textWrap="true" />

 <Image src="res://game" width="75" height="75"

 stretch="aspectFill" />

 <Label text="$9.99" />

 </StackLayout>

 <StackLayout row="3" col="0" style="background-color: #CCCCCC;">

 <Label text="Vampire Valkyrie" textWrap="true" />

 <Image src="res://game" width="75" height="75"

 stretch="aspectFill" />

 <Label text="$21.99" />

 </StackLayout>

 </GridLayout>

</Page>

6.3.3 Additional layout containers

Over the past two chapters, you learned about the two most common layout containers: Stack Layout

and Grid Layout. By using these layouts and the practice of nested layouts, you can create complex

layouts. But, sometimes you need something with a little more flexibility.

NativeScript has three additional layouts you can use to build more complex (and flexible) UIs:

absolute, dock, and wrap layouts. We want to make you aware of these layouts, but we’re not going to

cover them aside from the mention above. Why? In practice, 95% of the layouts you’ll create in a

NativeScript app will use the stack and grid layout. In fact, across all the apps we’ve written, we’ve only

had to use a different layout once. Of course, your mileage may vary, and we don’t want to lock you into

the stack and grid layouts, but at the same time, don’t feel slighted that you’ve only learned about two

layouts.

As you begin developing an app, you can learn how the absolute, dock, and wrap layouts work by

reading the official NativeScript documentation at https://docs.nativescript.org/ui/layout-containers.

 Branstein / The NativeScript Book 127

PLAY This chapter’s final code version can be found in the Playground at

https://play.nativescript.org/?template=play-js&id=2xxKKW&v=8. Test it out for yourself!

6.4 Summary

In this chapter, you learned that:

▪ Grid layouts are a collection of rows and columns, allowing you to organize UI elements in a grid

▪ You define the number and method for sizing rows and column via comma-separated values of the

rows and columns property of a grid layout

▪ There are three methods for specifying the width and height of columns and rows within a grid

layout: by pixels, by percentage, and automatically

▪ Rows and columns using the percentage-sizing method take up all available grid space, which is

determined only after rows and columns using the pixel and automatic sizing methods are displayed

6.5 Exercise

In this chapter, you learned how to organize UI elements on the screen with various layouts. Try using

what you’ve learned to do the following:

▪ Using a grid layout, create a three-row, three-column layout container that is 500 pixels wide and

1000 pixels high. Make the first row 300 pixels high, the second row automatically adjust to the

maximum height of the elements in the row, and the third row consume the remaining available

grid space. The first, second, and third columns should be 300 pixels, 100 pixels, and 100 pixels

wide, respectively. Place a label in each grid cell with the text set to the coordinate for each grid

cell.

6.6 Solutions

To complete the grid layout exercise, do the following:

▪ Define the grid layout with <GridLayout width=”500” height=”1000”>.

▪ Add rows=”300,auto,*” to the Gird-Layout element.

▪ Add columns=”300,100,100” to the Grid-Layout element.

▪ Add the following Labels to the grid layout:

o <Label text=”(0,0)” row=”0” col=”0” />

o <Label text=”(0,1)” row=”0” col=”1” />

o <Label text=”(0,2)” row=”0” col=”2” />

o <Label text=”(1,0)” row=”1” col=”0” />

o <Label text=”(1,1)” row=”1” col=”1” />

o <Label text=”(1,2)” row=”1” col=”2” />

o <Label text=”(2,0)” row=”2” col=”0” />

o <Label text=”(2,1)” row=”2” col=”1” />

 Branstein / The NativeScript Book 128

o <Label text=”(2,2)” row=”2” col=”2” />

 Branstein / The NativeScript Book 129

7
Styling NativeScript apps

This chapter covers

• Using CSS to style NativeScript apps

• Displaying images that visually appear the same size on various-sized mobile devices

• Accounting for varying DPI densities when displaying images

Developing mobile apps isn’t about just the technical know-how. Mobile app development is also about

creating beautiful apps, with a great user experience and stunning visuals. In other words, apps let mobile

developers highlight their creative capabilities. Up until this point in the book, I’ve been focused on

creating content and the technical side of organizing the UI; let’s be honest: the Tekmo app looks bland.

I’ve ignored making the UI look appealing, and instead focused on functionality. It’s time for a change.

For an app to feel highly functional, the UI needs to be visually appealing. Think about it: how many

apps are in the Google Play and iTunes stores? Millions of apps with tens of billions of downloads. How do

you differentiate your app from the millions of other apps? What makes your app special? Well-designed

and thoughtful functionality is one step, and a compelling UI is another.

In this chapter, you’ll learn how to use the tools that can transform your app from wimpy to whammy!

But, I won’t lie to you: creating beautiful apps isn’t simple. It takes planning and some artistic abilities.

Truthfully, I don’t have these artistic abilities; however, when I see something stunning in an app, I know

it. It’s often hard to describe why I think it’s stunning, but I know it when I see it.

If you’re like me, it’s time to buddy-up. Find a friend or co-worker that has that artistic flair and who

might be willing to sit down with you for an hour or two over a coffee to sketch out some basic concepts.

Good visuals and a solid UI generally don’t happen by accident, so it may take a few cups of coffee before

everything falls into place. Be patient.

Back in chapter 3, I said to be agile. That tip still applies here. Start with a sketch (not a blank computer

screen) when you start to create your apps. But don’t spend months refining that sketch before you start

coding. After all, if you don’t start coding, the app will never get into the hands of someone to test. Briefly

 Branstein / The NativeScript Book 130

plan with a rough idea, then code. Along the way to a functional app, your app’s design will take turns

you didn’t anticipate.

Let’s get started!

PLAY We’re continuing the Tekmo app from the previous chapter. If you want to follow along, you can

use the Playground version of the code! Check it out here:

https://play.nativescript.org/?template=play-js&id=2xxKKW&v=8.

7.1 Using cascading style sheets

I’ve been comparing NativeScript app development to HTML application development throughout the

beginning of the book, not because it’s convenient, but because they’re similar. NativeScript app styling

is another opportunity for this comparison because you style your apps with cascading style sheets (CSS).

7.1.1 Styling basics

If you recall from earlier chapters, a NativeScript page has three components: an XML file, a JavaScript

file, and a CSS file (figure 7.1).

Figure 7.1 Pages have three components: an XML file, a CSS file, and a JavaScript file.

We want to come back to my original statement that you style your NativeScript apps with CSS: there

are some exceptions.

NOTE NativeScript apps can be styled with a subset of CSS. In other words, not all aspects of CSS can

be used in (or apply to) NativeScript apps.

The CSS Specification

CSS is an incredibly broad term, referring to a collection of various specifications on how to define style

(for example, fonts, colors, spacing, and so on), and is intended apply to HTML. Although NativeScript

apps are like HTML apps, they’re not the same technology.

A group known as the CSS Working Group meets regularly to discuss and define an official collection of

specifications that form what most people commonly refer to as CSS. The specifications are incredibly

 Branstein / The NativeScript Book 131

detailed and are broken into various sub-areas including media queries, a color module, box alignment,

scroll snapping, selectors, style attributes, text module, and so on. These specifications are under

continual development. You can find out the current state of CSS and these specifications by visiting

https://www.w3.org/Style/CSS/current-work.

When NativeScript loads a page, these three files are automatically loaded. So, by creating a file

named page-name.css, you can create page-specific CSS style rules. In addition to creating page-specific

CSS styles, you can also specify CSS style for your entire application and on individual UI elements. Table

7.1 describes the three ways of specifying style.

Table 7.1 Different methods and locations for specifying CSS style within an app

Method Location Description

global app.css Sets CSS style rules for the entire app. All pages will inherit

the style rules from the app.css file.

page-specific <page-name>.css Sets CSS style rules for a specific page. To use this method,

create a CSS file with the same name as the page and add

CSS style rules to the file.

(inline) UI element-

specific

style=”...”

attribute on a UI

element

Sets CSS style rules for an individual UI element. Add a

style=”…” attribute to any UI element’s declaration and

include style rules within the attribute value.

You can use any combination of these methods when styling an app, so staying organized is important.

TIP If you’re developing an app with others, establishing which of the three methods for defining CSS

you’ll use is important. Discuss this with your team early in your project, and document your decisions.

When you start adding CSS style rules to your app, it can be confusing which of the three CSS styling

methods to use: should it be global, page-specific, or defined on a UI element? If you’re unsure, consider

the following recommendations:

1. Avoid inline UI element-specific style rules. Even though it’s possible to use this method, it is not

a generally-accepted good practice. CSS styles are meant to be separate from the UI.

2. Start by placing all style rules in a page-specific CSS file.

3. If you find that you’re repeating a style rule on more than one page (or if you suspect the style

will be used on more than one page), consider removing the style rule from the page-specific CSS

files and create a global style rule in the app.css file.

SUPPORTED STYLE SELECTORS AND PROPERTIES

NativeScript supports a subset of the CSS selector syntax. You can use 5 different CSS selectors: type

selectors, class selectors, ID selectors, hierarchical selectors, and attribute selectors. You should be

familiar with these selectors, so I’m not going to explain them in greater detail. If you’d like a quick

https://www.w3.org/Style/CSS/current-work

 Branstein / The NativeScript Book 132

refresher, the official NativeScript documentation has a good introduction on the selectors at

http://docs.nativescript.org/ui/styling.

NOTE You might be thinking why NativeScript doesn’t support every CSS selector. Not all CSS

properties apply to mobile apps. For example, the :hover selector is used to select an element

when a mouse hovers over it. This isn’t applicable to mobile devices.

Like the subset of CSS selectors supported by NativeScript, you can use only a subset of CSS properties

in a NativeScript app. The supported properties include many of the common properties you are already

familiar with relating to color, font, background images, text, alignment, spacing (margin and padding),

and size (width and height). The complete list of supported properties is included online at

http://docs.nativescript.org/ui/styling.

NOTE Just like selectors, not all properties apply to mobile devices. For example, the nav-

{up|down|left|right} properties apply to keyboard navigation, so these aren’t supported

by NativeScript.

7.1.2 Using global CSS styles

Let’s start by adding some CSS style rules to the Tekmo app. We’ll start by making several global style

changes to the app.

NOTE Remember that global CSS changes will apply to the entire app, so these rules should target

styling aspects we expect to apply to more than one page.

Most of the app pages have title text that should stand apart from other text on the pages. Create a

style rule for title text by adding a CSS class selector to the app.css file. Listing 7.1 shows how to add the

selector to the app.css file, specify a font size of 30, center alignment, and a margin of 20 on all sides. A

subtitle selector is also specified, giving subtitles a font size of 20.

Listing 7.1 Adding a class selector and properties to style text on all app pages

.title {

 font-size: 30;

 horizontal-align: center;

 margin: 20;

}

.sub-title {

 font-size: 20;

}

After adding the global .title class selector, you’ll need to add the class=”title” attribute to the

title label elements on the Home, About, and Products pages. For example, the Home page’s title label

will be <Label textWrap=”true” text=”Welcome to Tekmo!” class=”title” /> after you’ve

added the class attribute. The About page also has several labels acting as subtitles. Change the two

subtitle labels on the About page to include the sub-title class name.

<Label text="Our Mission" class="sub-title" />

 Branstein / The NativeScript Book 133

<Label text="History" class="sub-title" />

Let’s look at how this has changed your app. Figure 7.2 shows a before and after snapshot of the

About page.

Figure 7.2 The About page without styling (on left) and with styling (on right).

To go along with the changes to the title, provide a default style for all labels, so they have a little

more space around the elements (listing 7.2). This is a global style, so it should be added to the app.css

file.

 Listing 7.2 A type selector for applying margin space around all labels and centering buttons

Label {

 margin-left: 10;

 margin-right: 10;

 margin-bottom: 10;

}

Finally, let’s reduce the size of the buttons on the Home page, creating a universally-sized button

throughout the app (42). You’ll recall from chapter 3 that we used the default NativeScript app template

to create the Tekmo app. Because we used this template, there’s already a button type selector included

in the app.css file, as seen in listing 7.3.

WARNING We’ve relied on the default app template that has a button type selector already, but the

default template could change over time. Don’t worry – if the default template has changed and your

app.css file doesn’t have the button selector included, you can add it.

 Branstein / The NativeScript Book 134

Listing 7.3 The default button type selector in the app.css file

button {

 font-size: 42;

 horizontal-align: center;

}

This default code styles buttons at a size that is way too big for our purposes. Let’s update the button

style by removing the font-size: 42; property.

With these latest additions, the Home and About pages, as seen in figure 7.3, look a little more

presentable.

Figure 7.3 The About page with limited text styling.

Now that you’ve learned some of the basics of styling apps with CSS, let’s move on to styling the grid

layout on the Products page.

7.1.3 Styling a grid layout with page-specific CSS

Before we start styling the Products page grid layout, let’s look at the current state of the page. Figure

7.4 shows the Products page, as of the end of chapter 6.

 Branstein / The NativeScript Book 135

Figure 7.4 The Products page with limited styling, as seen at the end of Chapter 6.

As you can tell, the Product page is fairly plain. Let’s make several changes:

▪ Give all app pages a default background color instead of white.

▪ Remove the alternating grid cell colors.

▪ Color the grid cells white and add spacing between them, so an app user can visually tell where

one tile ends and another begins.

▪ Add a solid band of color (a.k.a. title banner) across the top of each grid cell to surround the game

title.

▪ Style the game titles to stand out against the solid band of color.

▪ Right-align the price and add some color.

▪ Style the highlighted Super Marshmallow Man grid cell to make it stand out in comparison from

other tiles.

This is a lot of change to make at once, so we’ll walk through them together. But if you like challenge,

go ahead and try it out on your own. As we work through these changes, I won’t give you a figure for

each step, but you’ll see in-progress figures for the major milestones.

 Branstein / The NativeScript Book 136

SETTING AN APP-WIDE BACKGROUND COLOR

Let’s start by giving all the app pages a default background in the app.css file. Listing 7.4 shows the

additions.

Listing 7.4 Additions to the app.css file to change the app’s background color to a shade of light

grey

Page {

 background-color: #EFEFEF;

}

REMOVING INLINE STYLES FROM GRID CELLS

Next, let’s remove the inline style attributes (style=”background-text: ...”) from the grid cells on

the Products page. Once you’ve removed these attributes, your grid layout should match the code in

listing 7.5.

Listing 7.5 Resulting file after removing inline style attributes

<GridLayout rows="*,*,*,*" columns="*,*" width="300" height="600">

 <StackLayout row="0" col="0" colSpan="2">

 <Label text="Super Marshmallow Man" textWrap="true" />

 <Label textWrap="true" text="Escape from certain death

 in this wild adventure!" />

 <Label text="$34.99" />

 </StackLayout>

 <StackLayout row="1" col="0">

 <Label text="Couch Commander" textWrap="true" />

 <Label text="$24.99" />

 </StackLayout>

 <StackLayout row="1" col="1">

 <Label text="Mummy Madness" textWrap="true" />

 <Label text="$32.99" />

 </StackLayout>

 <StackLayout row="2" col="0">

 <Label text="Pyro Robots" textWrap="true" />

 <Label text="$19.99" />

 </StackLayout>

 <StackLayout row="2" col="1">

 <Label text="Rescue Pups" textWrap="true" />

 <Label text="$9.99" />

 </StackLayout>

 <StackLayout row="3" col="0">

 <Label text="Vampire Valkyrie" textWrap="true" />

 <Label text="$21.99" />

 </StackLayout>

</GridLayout>

After making these changes, the Products page looks a bit more “bleh”, as shown in figure 7.5. That’s

ok though; we’re ready to start giving it some flair.

 Branstein / The NativeScript Book 137

Figure 7.5 The Products page after removing all grid layout styling and setting the background color to a light grey.

ADDING SPACE AND A BACKGROUND COLOR

Our next task is to set the background color of the grid cells to white and add a margin between each cell.

These changes don’t necessarily apply to the entire app, so they should go into a page-specific CSS file.

Create a new file named product.css and place it in the same directory as the products.xml file. With the

page-specific CSS file created, create a tile class selector that will be used to represent each grid cell.

Add a background-color and margin property to the tile class selector, as shown in listing 7.6.

Listing 7.6 Additions to the products.css file to make the grid cells stand out

.tile {

 background-color: #FFFFFF;

 margin: 2;

}

Let’s use the tile class we just created to apply these styles to each grid cell. Add class=”tile” to

each of the StackLayout elements on the Products page. This change makes a dramatic difference to

the Tekmo app, as seen in figure 7.6.

 Branstein / The NativeScript Book 138

Figure 7.6 The Products page with grid cells identified with a white background color.

ADDING A TITLE BANNER

The title banner is a solid band or strip of color containing the game’s title across the top of each grid cell.

At first, this change seems straight forward: set the background color of the title label, but figure 7.7

shows what happens when we take this approach. It’s not the result we want.

 Branstein / The NativeScript Book 139

Figure 7.7 The Products page after with a background-color style applied to the tile labels.

When you set the background color of a label, NativeScript literally does just that: it sets the

background of the label. Unfortunately, a label’s background only falls underneath the inner text. The

resulting effect of setting the background color is technically correct, but it doesn’t look visually appealing.

What we really want is a banner of color that stretches the entire width of each grid cell. Luckily, there’s

an easy way to do this.

TIP To add a solid banner or block of color to a page, add a stack layout and style the background color

of the stack layout.

Using this tip, wrap a stack layout around the title label and apply a background color via a class

selector. Listings 7.7 shows the changes to the products.css file and how to change one of the grid cells

from the Products page by wrapping the title label in a stack layout targeting the tile-title CSS class.

Listing 7.7 Additions to the products page files to style the background color of the tile banner

.tile-title { #A

 background-color: #99ccff; #A

} #A

<StackLayout row="0" col="0" colSpan="2" class="tile"> #B

 <StackLayout class="tile-title"> #B

 <Label text="Super Marshmallow Man" textWrap="true" /> #B

 </StackLayout> #B

 <Label textWrap="true" text="Escape from certain death in #B

 this wild adventure!" /> #B

 <Label text="$34.99" /> #B

</StackLayout> #B

#A Add to the products.css file

#B Update the products.xml file to add a tile-title class to the stack layout wrapping the title labels

After applying the same stack layout wrapping strategy to the remaining grid cells on the Products

page, you will achieve the desired effect, as shown in figure 7.8.

 Branstein / The NativeScript Book 140

Figure 7.8 The Products page after correctly styling the grid cell titles via the background color of a stack layout

wrapped around the title labels.

STYLING THE GRID CELL TEXT

The next change we’ll make is to adjust the color and position of the title banner label and price label by

adding style rules to the products.css file. Add a class attribute with a value of price to each price label,

then add the CSS styles outlined in listing 7.8. Figure 7.8 shows the resulting UI changes.

Listing 7.8 Additions to the products.css file to style the background color of the tile banner

.tile-title Label {

 font-size: 14;

 color: black;

 margin-top: 5;

}

.price {

 color: #009933; #A

 text-align: right;

}

#A #009933 is green

 Branstein / The NativeScript Book 141

Figure 7.9 The Products page after applying styles to the titles and prices.

HIGHLIGHTING THE FEATURED PRODUCT

Now that we’ve added styles to each of the grid cells, let’s turn our attention to the featured product:

Super Marshmallow Man. It would be nice to make that grid cell stand out from the rest of the cells. One

way to make this grid cell stand out is to apply an additional class to it and then use that additional class

to override the styles already applied.

DEFINITION Overriding a CSS style is the process of defining a general style rule (like all labels with a

class of small are font size 14) and selectively changing the value of the general style rule in certain

circumstances. For example, if a label with the small class also has a class of heading, then the font

size should be 16, rather than the default 14.

Let’s add an additional class named highlight to the featured product grid cell, then override some

of the style properties in the products.css file by adding rules for each of our tile-related classes when the

tile also has the highlight class applied. Listing 7.9 outlines the CSS additions and listing 7.10 shows

addition of the highlight class to the UI.

NOTE One way of overriding CSS styles is to apply an additional class to a parent element. The highlight

class is in listing 7.9.

Listing 7.9 Additions to the products.css file to highlight the featured product

.highlight .tile-title { #A

 font-weight: bold; #A

 background-color: #6699ff; #A

} #A

 Branstein / The NativeScript Book 142

.highlight .tile-title Label { #B

 font-size: 18; #B

} #B

.highlight .price { #C

 font-weight: bold; #C

 color: red; #C

} #C

#A Change the title banner to have bold text and a slightly darker background color

#B Increase the title font size slightly

#C Make the price standout by making it bold and red

Listing 7.10 Additions to the products.xml file to highlight the featured product

<StackLayout row="0" col="0" colSpan="2" class="tile highlight">

 <StackLayout class="tile-title">

 <Label text="Super Marshmallow Man" textWrap="true" />

 </StackLayout>

 <Label textWrap="true" text="Escape from certain

 death in this wild adventure!" />

 <Label text="$34.99" class="price" />

</StackLayout>

In figure 7.10, you’ll notice the results of these style changes: the title banner is slightly darker, the

title text is larger and bold, and the price text is bold and a different color.

Figure 7.10 The Products page with the Super Marshmallow Man grid cell highlighted with a different style.

Great work! The CSS styles used to style the Tekmo app are by no means exhaustive of the capabilities

in NativeScript, but they should serve as a launch point for you to feel empowered to try some ideas of

your own.

 Branstein / The NativeScript Book 143

7.2 Adding images to an app

In addition to styling text, adding background colors, and creatively arranging UI elements with borders

and margins, images are another powerful tool in your tool belt for transforming “blah” apps into

something beautiful. In this section, you’ll learn how to add images to an app by further refining the

Tekmo app’s Products page.

7.2.1 Using the Image element

Let’s get right to it and add images to each of the grid cells on the Products page by adding an <Image

/> element to each grid cell.

DEFINITION An image is a JPEG or PNG graphic that will be displayed in the UI of an app. To add an

image, you use the <Image /> element.

Listing 7.11 contains the images to be added to the Products page. When adding the images, place

them within the stack layout with the tile class, directly below the stack layout with the tile-title

class.

NOTE You can find the images used in this section by downloading a zip file containing the images

from

https://github.com/mikebranstein/TheNativeScriptBook/blob/master/Chapter7/Tekmo/app/images/hi

gh-res-game-images.zip.

Listing 7.11 Adding an image to each grid cell in the products.xml file

<Page xmlns="http://schemas.nativescript.org/tns.xsd">

 <GridLayout rows="*,*,*,*" columns="*,*" width="300" height="600">

 <StackLayout row="0" col="0" colSpan="2" class="tile highlight">

 <StackLayout class="tile-title"> #A

 <Label text="Super Marshmallow Man" textWrap="true" /> #A

 </StackLayout> #A

 <Image src="~/images/super-marshmallow-man.png" /> #B

 <Label text="$34.99" class="price" />

 </StackLayout>

 <StackLayout row="1" col="0" class="tile">

 <StackLayout class="tile-title">

 <Label text="Couch Commander" textWrap="true" />

 </StackLayout>

 <Image src="~/images/couch-commander.png" />

 <Label text="$24.99" class="price" />

 </StackLayout>

 <StackLayout row="1" col="1" class="tile">

 <StackLayout class="tile-title">

 <Label text="Mummy Madness" textWrap="true" />

 </StackLayout>

 <Image src="~/images/mummy-madness.png" />

 <Label text="$32.99" class="price" />

 </StackLayout>

 <StackLayout row="2" col="0" class="tile">

 <StackLayout class="tile-title">

 Branstein / The NativeScript Book 144

 <Label text="Pyro Robots" textWrap="true" />

 </StackLayout>

 <Image src="~/images/pyro-robots.png" />

 <Label text="$19.99" class="price" />

 </StackLayout>

 <StackLayout row="2" col="1" class="tile">

 <StackLayout class="tile-title">

 <Label text="Rescue Pups" textWrap="true" />

 </StackLayout>

 <Image src="~/images/rescue-pups.png" />

 <Label text="$9.99" class="price" />

 </StackLayout>

 <StackLayout row="3" col="0" class="tile">

 <StackLayout class="tile-title">

 <Label text="Vampire Valkyrie" textWrap="true" />

 </StackLayout>

 <Image src="~/images/vampire-valkyrie.png" />

 <Label text="$21.99" class="price" />

 </StackLayout>

 </GridLayout>

</Page>

#A Place the image directly below the stack layout with a class attribute of tile-title

#B The game images from above, placed below the stack layout

After adding the images to the Products page, it’s starting to come together, as shown in figure 7.11.

 Branstein / The NativeScript Book 145

Figure 7.11 The Products page after images have been added to the XML code.

I want to call your attention to the markup of the image element. NativeScript images are like HTML

images, specifically in how they reference image files to load using the src attribute. You can load both

local and remote image files by using a file name of a file in the same folder (for example, image-

 Branstein / The NativeScript Book 146

name.png), a relative file path and file name of an image in a different folder (..\..\image-

name.png), or a URL. The syntax is similar to how images are loaded in HTML, and summarized in table

7.2 as a point of reference.

Table 7.2 Different methods for loading image resources

Method Syntax Description

relative file path src=”{image-file-path}” Loads an image from a location within the app,

relative to the folder the page is located in

URL src=”http://image-url”

src=”https://image-url”

Loads an image from a URL using HTTP or

HTTPS

resource src=”res://image-name” Similar to relative file path, but loads the image

from the App_Resources folder. No file name

extension is needed.

One difference from the HTML image syntax you’ll notice is the resource method for loading images.

DEFINITION Loading images by resource is a way of loading different versions of an image based upon

a device’s resolution.

It’s important that you know about this method, because it is an extremely powerful capability of

NativeScript (and makes your life easier when developing cross-platform apps).

Before you learn about the specifics of resource loading, however, you’ll need a little more background

on mobile devices. In chapter 3, you learned about the varying screen resolutions and DPI. You’ll need to

draw on this past knowledge in the next section, so let’s review what DPI means before we jump in.

DEFINITION Dots per inch (DPI) is a measure of dot density, and is usually used in the printing industry

to describe the number of printed dots appearing in a square inch of a printed book or magazine. When

referring to screens, the concept of a “dot” is often confused with a “pixel.” Screens have pixels, not

dots; therefore, their density is measured in pixels with pixels per inch (PPI). Although DPI and PPI are

technically different, most people don’t differentiate between the two. In fact, the Android platform

prefers the terminology of DPI versus PPI. Through this book, I will use the term DPI.

7.2.2 Challenges with displaying images on mobile devices

It’s important to understand (at a high-level) the challenges in consistently displaying images on various

mobile devices.

WARNING This section may scare you initially, and that's because cross-platform device DPIs and the

various requirements for Android and iOS can be confusing. But don't worry: NativeScript does a good

job of abstracting away the complexities of cross-platform images. Stick with us!

 Branstein / The NativeScript Book 147

One of the core problems in displaying images consistently is the sheer number of mobile devices,

each with varying screen size, resolution, and DPI. Let's use the iOS device ecosystem as an example.

iOS devices are part of a highly-controlled hardware ecosystem, resulting in fewer variances across the

models. Now, consider the different iPhone models as of mid-2016: 2G, 3G, 3Gs, 4, 4s, 5, 5s, 5c, 6, 6

plus, 6s, 6s plus, 7, and SE. There are 13 different models at the time of this book, with anywhere between

four and seven various screen resolutions (depending how you count), and displayed at three different

DPI densities.

NOTE If you’re interested in learning more about the various iPhone screen resolutions and DPIs, check

out https://www.paintcodeapp.com/news/ultimate-guide-to-iphone-resolutions. This guide has an

excellent visual explaining how iOS maps and transforms images to the different screen sizes and DPI

settings.

Yow! That's only iOS, the most standardized hardware device ecosystem. Android has similar

differences, but it's across an even larger hardware space, with five different DPI densities. I don't want

to sound all doom-and-gloom to you, so let me back-pedal. There are well-defined standards and

guidelines for displaying images on both Android and iOS platforms, so my point isn’t to scare you away,

just illustrate some of the complexity and challenges.

THE EFFECT OF VARIABLE SCREEN DPI

So, what does this mean for you? Unfortunately, a lot. But, I’m going to take it slow. As a mobile

developer, it’s critical to understand the differences between platforms, because it’s an important aspect

of cross-platform mobile development.

A core challenge in developing images for multiple DPI densities is satisfying the expectations of your

users. Older mobile devices tend to have lower-DPI displays. You can design and create beautiful high-

resolution images, but the screen just isn’t capable of displaying the image so it looks crisp and clear.

Take the Super Marshmallow Man image as an example (figure 7.12), displayed on a low-DPI screen (163

DPI) and high-DPI screen (401 DPI).

 Branstein / The NativeScript Book 148

Figure 7.12 Side-by-side images of a low DPI display (163 DPI, on left) and a high DPI screen (401 DPI, on right)

displaying the same high-resolution image. Note the low DPI screen appears to have a blurry image.

The difference between the images is subtle, but if you look closely at the text, it’s easy to see. Figure

7.13 shows the images zoomed in for a closer view.

Figure 7.13 A zoomed view of a low- (left) and high- (right) DPI display showing the same image.

From this closer look, you can see the low-DPI display on the left is much blurrier than the image on

the right. Having an older and low-DPI phone, I expect everything on my phone to appear blurry, but if I

had a high-DPI phone, I’d want my images to be crisp and clear all the time.

So, one of the core problems in developing images across various DPIs is ensuring your images look

as good as possible on every device.

7.2.3 Solutions to DPI density differences

Let’s recap the problem at hand. Between Android and iOS, there are a total of nine different screen DPIs,

and when we display an image across each of these devices, we want the image to be crisp and clear (or

as crisp and clear as they can be based upon the device’s DPI).

There are a lot of ways to solve this problem, but I’m going to focus on two: a simple way and a brute-

force way. Let’s tackle the simple way first, and discuss why you may not want to use this solution. Then,

we’ll talk about a solution I call brute force because it requires a lot of work but will give your users a

better experience.

THE SIMPLE SOLUTION

The simple solution is to use high-resolution images in your app always. This guarantees that users with

lower DPI phones get the best possible experience for every device. When you use this method, you want

to also specify a display size for the image. Let’s continue to use the Super Marshmallow Man image as

an example, stretching it to fill the screen. Listing 7.12 contains the code used to display the image.

Listing 7.12 Displaying an image to fill the entire screen across any device

<Page>

 <GridLayout rows=”*” columns=”*”> #A

 <Image src=”~/images/super-marshmallow-man.png” />

 </GridLayout>

</Page>

#A A grid layout with 1 row and 1 column set to * will expand to fill an entire screen

By creating a grid layout with one row and column set to the default (*) sizing option will expand the

grid’s content to fill the entire page. The image inside the grid will expand to the full size of the screen.

 Branstein / The NativeScript Book 149

Figure 7.14 shows the image displayed on an iPhone 3GS (163 DPI) and 6 Plus (401 DPI). Note that I’ve

zoomed in on the 3GS so it’s physical size appears the same as the 6 Plus (just imagine you’re holding it

closer to your face). The screen resolution of the iPhone 3G is substantially smaller than the iPhone 6

Plus, so the image will appear blurry (but it is still the best possible result on both devices).

Figure 7.14 High-resolution images displayed on the iPhone 3G (left) and iPhone 6 Plus (right). Note the blurriness,

especially on the iPhone 3G.

This approach is simple and it gives the best possible user experience (visually), but you’re loading a

high-resolution image on low-resolution displays. That’s inefficient, and could lead to performance

problems. You really want to load images that are “high enough” resolution to look right on each device.

WARNING Don’t load high-resolution images on low DPI devices. Devices with low-resolution displays

typically have less processing power and memory, therefore, optimizing your app as much as possible

will lead to overall better behavior. Now, this is a generalization that may not apply in every

circumstance, but better safe than sorry.

There is a better way.

SOLVING THE MULTIPLE-DPI DEVICE PROBLEM

Because the simple solution could result in poor user experience, let’s discuss a better way. The answer

to this problem is straightforward, but rather brute force.

SOLUTION If you have nine varying DPIs, create nine different versions of each image (one for each

varying DPI).

 Branstein / The NativeScript Book 150

See, I said it was brute-force. Because this solution is so labor intensive, we’re going to explain how

to do it at a high-level, but then give you a way to cheat and skip the manual steps:

▪ Determine the highest DPI you’ll be supporting (for example, 401 DPI for iPhone 6 Plus).

▪ Decide the maximum visual size of the displayed image (for example, 1 inch).

▪ Calculate the minimum dimensions for your image (for example, for a square image, 1 inch x 401

DPI = 401 x 401 pixels).

▪ Create a crisp and clear image with the minimum dimensions, saving this as an original base image.

▪ Calculate the varying smaller image dimensions you need based on the varying device DPIs (for

example, for iOS you’ll also need 326 DPI and 163 DPI, resulting in 2 more images 326 x 326 pixels

and 163 x 163 pixels).

▪ Using the base image, shrink the base image down to the other sizes calculated in the previous

step, making sure you start with the saved base image each time you shrink to another DPI.

What a pain! You’ll have to do this up to nine times to support all of the various DPIs for both Android

and iOS. But, no fear, we’ve got you covered. We built a website dedicated to resizing your images for

Android and iOS: http://nsimage.brosteins.com. To use the site, upload a single high-resolution image.

After uploading, the image is resized to all the various image resolutions needed for Android and iOS. A

zip file containing all the variations is then downloaded.

TIP Don’t manually shrink your images, use an online service like the Brostein’s image creator,

http://nsimage.brosteins.com.

If you stick with this solution, you’ll be guaranteed to have crisp and clear images that display in your

apps.

7.2.4 Displaying multi-resolution images in NativeScript apps

Now that you learned the process for making images crisp and clear, you’ve got up to nine different

images! How can you display these, across the various devices, and know which image to use in which

circumstance? Don’t worry: NativeScript makes this easy with something called image resources.

DEFINITION Image resources make it easy to load the right image for each platform. Like other aspects

of NativeScript, image resources rely on conventions. If you name your collection of images with a

specific file-naming convention and place them in the App_Resources folder of your app, NativeScript

will automatically load the correct image.

I’ll explain how and where to place image resources in a few minutes, but let’s cover the easy part

first: referencing an image resource in the image element. To add a reference to an image resource,

change the src=”{image-file-name}” attribute of the image element to src=”res://{image-

file-name-without-extension}”. Listing 7.13 shows the changes you’ll have to make to the

Products page to switch each image.

 Branstein / The NativeScript Book 151

Listing 7.13 Using image resources to load images

<Image src="res://super-marshmallow-man" /> #A

<Image src="res://couch-commander" /> #A

<Image src="res://mummy-madness" /> #A

<Image src="res://pyro-robots" /> #A

<Image src="res://rescus-pups" /> #A

<Image src="res://vampire-valkyries" /> #A

#A Replace the existing image elements with the image resource version

When you add an image element that references an image resource, you don’t need to specify the file

extension, just the file name preceded by res://, as shown in listing 7.12.

Now that you’ve learned how to reference image resources, let’s tackle the more laborious part:

creating the multiple image versions for Android and iOS. In chapter 3, you learned that the

App_Resources folder holds platform-specific files. Android customizations are located inside the Android

folder, and iOS customizations in the iOS folder. Unfortunately, each platform organizes their platform-

specific files a bit differently, so we’ll look at each platform separately, beginning with Android.

ANDROID IMAGE RESOURCES

Let’s take a moment and explore the Android-specific contents of the App_Resources folder (figure 7.15).

Figure 7.15 The App_Resources Android folder showing the DPI density folder structure.

Inside the Android folder, note the six folders named drawable-{size}dpi. These folders

correspond to the six different device DPI densities on the Android platform.

NOTE Due to the large ecosystem of Android devices, the six DPI densities aren’t exact. Instead,

approximate DPIs are used, because they can vary between similar devices.

Table 7.3 summarizes the approximate DPIs for each of the six categories.

Table 7.3 Approximate Android device DPI densities and the corresponding App_Resources folder

Size App_Resources Folder Approximate DPI

 Branstein / The NativeScript Book 152

low drawable-ldpi ~120 DPI

medium drawable-mdpi ~160

high drawable-hdpi ~240

extra-high drawable-xhdpi ~320

extra-extra-high drawable-xxhdpi ~480

extra-extra-extra-high drawable-xxxhdpi ~640

To use image resources on Android, you place an appropriate-size image in each of the drawable-

{size}dpi folders. The files should all be named identically (see figure 7.15).

Let’s use the Super Marshmallow Man image from earlier in the chapter and create an image for each

Android DPI density.

▪ Start with a high-DPI version of the super-marshmallow-man.png file. You can download it from:

o https://github.com/mikebranstein/TheNativeScriptBook/blob/master/Chapter7/Tekmo

/app/images/high-res-game-images.zip

▪ Use our website http://nsimage.brosteins.com to create the various device-specific resolutions for

each of the high-resolution images in the zip file. If you’re a designer and would rather manually

convert the images manually, grab your favorite image editor and have at it (you can reference

table 7.3 to get the right DPI for each image)

▪ Save each image to the corresponding folder in the App_Resources/Android folder of your

NativeScript app. Be sure the names are all identical (for example, super-marshmallow-man.png)

After you’ve finished creating the six images from the original super-marshmallow-man.png file,

you should have a file named super-marshmallow-man.png in each of the folders (figure 7.16).

 Branstein / The NativeScript Book 153

Figure 7.16 Image resources are placed in each drawable folder. Files are named the same.

If you were to open several of the images side-by-side, you’ll notice the varying sizes. Figure 7.17

shows the low-, high-, and extra-extra-high-resolution versions. As you’d expect the extra-extra-high

version appears approximately four times the size as the low-resolution version (~480 dpi / ~120 dpi =

~4x).

Figure 7.17 ldpi, hddpi, and xxhdpi images compared side-by-side to visual the difference in size (shown from left to

right).

IOS IMAGE RESOURCES

The App_Resources/iOS folder is organized differently, compared with the Android folder. Figure 7.18

shows the iOS folder from the Tekmo app.

 Branstein / The NativeScript Book 154

Figure 7.18 iOS image resources for the Super Marshmallow Man image. Note the lack of nested folders and the file

naming differences.

First, you’ll notice there’s no folder hierarchy related to images and device DPI densities. Instead, all

DPI-specific images are placed in the root of the iOS folder.

Second, image resources for iOS are named differently, and correspond to the various DPI densities

on iOS. Like Android’s ldpi, mdpi, …, xxxhdpi convention, iOS has three different device DPI densities that

it supports (163, 326, and 401 DPI). These densities correspond to a specific file-naming convention.

Table 7.4 details each DPI density and associated file name.

Table 7.4 iOS device DPI densities and the corresponding App_Resources file name

Size File name DPI

1x {file-name}.{extension} 163 DPI

2x {file-name}@2x.{extension} 326

3x {file-name}@3x.{extension} 401

Let’s create iOS-specific images with the same Super Marshmallow Man image we used previously.

▪ Start with a the same high-DPI version of the super-marshmallow-man.png file downloaded from:

o https://github.com/mikebranstein/TheNativeScriptBook/blob/master/Chapter7/Tekmo

/app/images/high-res-game-images.zip

▪ Create three images, each with a corresponding target DPI, as shown in table 7.4. Again, you’re

welcome to use an image-editing program of your choice, but we prefer to use the image re-sizer

at http://nsimage.brosteins.com to automate the process.

▪ Save the three images to the App_Resources/iOS folder of your NativeScript app. The images

should be named: super-marshmallow-man.png, super-marshmallow-man@2x.png, and

super-marshmallow-man@3x.png.

Now that we have generated image resources for Android and iOS, named the files properly, added

them to the correct App_Resources folder, and changed the image element to use the res:// syntax,

we’re ready to check out the results. Figure 7.19 shows the Products page after adding the images.

 Branstein / The NativeScript Book 155

Figure 7.19 The Products page with image resources added.

As you can see, it’s not quite right, because the images fill the grid cells, pushing out the prices, so

we’ll need to add some styling. If you haven’t been following along, I’ve included the XML code for the

 Branstein / The NativeScript Book 156

Products page in listing 7.14. Use this code as a reference so we can finish styling the Products page

together.

Listing 7.14 Complete Products page code with image resources added

<GridLayout rows="*,*,*,*" columns="*,*" width="300" height="600">

 <StackLayout row="0" col="0" colSpan="2" class="tile highlight">

 <StackLayout class="tile-title">

 <Label text="Super Marshmallow Man" textWrap="true" />

 </StackLayout>

 <Image src="res://super-marshmallow-man" />

 <Label textWrap="true" text="Escape from certain death

 in this wild adventure!" />

 <Label text="$34.99" class="price" />

 </StackLayout>

 <StackLayout row="1" col="0" class="tile">

 <StackLayout class="tile-title">

 <Label text="Couch Commander" textWrap="true" />

 </StackLayout>

 <Image src="res://couch-commander" />

 <Label text="$24.99" class="price" />

 </StackLayout>

 <StackLayout row="1" col="1" class="tile">

 <StackLayout class="tile-title">

 <Label text="Mummy Madness" textWrap="true" />

 </StackLayout>

 <Image src="res://mummy-madness" />

 <Label text="$32.99" class="price" />

 </StackLayout>

 <StackLayout row="2" col="0" class="tile">

 <StackLayout class="tile-title">

 <Label text="Pyro Robots" textWrap="true" />

 </StackLayout>

 <Image src="res://pyro-robots" />

 <Label text="$19.99" class="price" />

 </StackLayout>

 <StackLayout row="2" col="1" class="tile">

 <StackLayout class="tile-title">

 <Label text="Rescue Pups" textWrap="true" />

 </StackLayout>

 <Image src="res://rescue-pups" />

 <Label text="$9.99" class="price" />

 </StackLayout>

 <StackLayout row="3" col="0" class="tile">

 <StackLayout class="tile-title">

 <Label text="Vampire Valkyrie" textWrap="true" />

 </StackLayout>

 <Image src="res://vampire-valkyrie" />

 <Label text="$21.99" class="price" />

 </StackLayout>

</GridLayout>

 Branstein / The NativeScript Book 157

7.2.5 Styling images

Now that we’ve added our images to the Tekmo app, we have a little bit of clean up to do. The first thing

we should do is shrink the images to a reasonable size (~80 pixels). Add an Image { width: 80;

height:80; } style to the products.css file. The results are shown in figure 7.20.

Figure 7.20 The Products page after styling the images to reduce their size and including the price of the game.

Changing the image size looks OK, but the Super Marshmallow Man text and price has fallen out of

the grid cell. The highlighted image should be left-aligned, with the description and price aligned to the

right of the image.

There are a variety of ways to accomplish this style. Two ways are to do the following:

▪ Nest a 1-row, 2-column grid layout inside of the stack panel.

▪ Use a series of nested stack layouts, one stacking UI elements horizontally, and another stacking

the UI vertically.

You may think of a third or fourth way to organizing your UI, but let's use the stack layout approach

because it’ll help you learn about another aspect of the stack layout: orientation.

 Branstein / The NativeScript Book 158

DEFINITION The orientation property of a stack layout tells NativeScript whether to render the layout's

contents vertically or horizontally. By default, content is rendered vertically, but you can change it to

render horizontally by adding the orientation=”horizontal” attribute.

Add several stack layouts to the Super Marshmallow Man XML code, as shown in listing 7.15.

Listing 7.15 Products page code with image resources added

<StackLayout row="0" col="0" colSpan="2" class="tile highlight">

 <StackLayout class="tile-title">

 <Label text="Super Marshmallow Man" textWrap="true" />

 </StackLayout>

 <StackLayout orientation=”horizontal”> #A

 <Image src="res://super-marshmallow-man" />

 <StackLayout> #B

 <Label textWrap="true" text="Escape from certain death #B

 in this wild adventure!" /> #B

 <Label text="$34.99" class="price" /> #B

 </StackLayout> #B

 </StackLayout>

</StackLayout>

#A Wrap a horizontal stack layout around the image and labels

#B A second vertical stack layout will wrap the labels

Now, let’s increase the image size to 100 x 100 pixels by adding changing the image element style for

the highlighted image to .highlight Image { width: 100; height: 100; }. With these changes,

we have the final version of the Products page (figure 7.21).

Figure 7.21 The Products page after styling Super Marshmallow Man to include nested stack layouts with a blend of

horizontal and vertical orientations.

PLAY If you haven’t been following along on your own, you can grab a version of the Tekmo app in

the Playground: https://play.nativescript.org/?template=play-js&id=8j4jSU&v=17.

 Branstein / The NativeScript Book 159

7.3 Summary

In this chapter, you learned that:

▪ A subset of CSS style properties can be used to style the UI of NativeScript apps

▪ Style can be set globally (in the app.css file), on a page-by-page basis (using the page-name.css

file), and inline with the XML code (with a style=”...” attribute)

▪ Images can be added to NativeScript apps in three ways: locally (via a relative path and file name),

online (via http or https), and through a resource reference (using res:// and image resources in

the App_Resources folder)

▪ When loading images from the App_Resources folder, up to nine different images are needed to

support all device DPI densities on Android and iOS (Android requires six, iOS requires three)

▪ You can manually create App_Resources images using your preferred image editing tool or the

automated image resizer at http://nsimage.brosteins.com.

7.4 Exercises

In this chapter, you learned how to style NativeScript apps with CSS. Use what you’ve learned in this

chapter and previous chapters to do the following:

▪ Create a page that displays a green background when in portrait mode, but red when in landscape.

▪ Using figure 7.22 as a point of reference, design a page to mimic the page’s content and styling as

closely as possible. Hint: use the border-radius CSS property to get rounded corners.

Figure 7.22 An image with multiple rows and columns, varying fonts and colors, and a background.

7.5 Solutions

To create a page that displays a green background when in portrait mode, but red when in landscape do

the following:

▪ Assume the page name is main-page.xml.

▪ Create two page-specific XML files named main-page.port.css and main-page.land.css.

▪ Add Page { background-color: green; } to the main-page.port.css file.

 Branstein / The NativeScript Book 160

▪ Add Page {background-color: red; } to the main-page.land.css file.

To mimic the page’s content displayed in figure 7.22, do the following:

▪ Add the markup in listing 7.16 to the page.

Listing 7.16 XML markup to create the rounded-edge information box

<GridLayout rows="auto,auto,auto,auto" columns="*,*"

 class="info-container">

 <Label text="Height" row="0" col="0" class="info info-title" />

 <Label text="2' 04"" row="1" col="0" class="info info-value" />

 <Label text="Category" row="0" col="1" class="info info-title" />

 <Label text="Seed" row="1" col="1" class="info info-value" />

 <Label text="Weight" row="2" col="0" class="info info-title" />

 <Label text="15.2 lbs" row="3" col="0" class="info info-value" />

</GridLayout>

▪ Add the CSS styles in listing 7.17 to the page’s CSS file.

Listing 7.17 CSS styles to create the rounded-edge information box

.info-container {

 margin-bottom: 20;

 background-color: #30a7d7;

 border-radius: 20;

 padding: 20;

 padding-bottom: 5;

}

.info-title {

 margin-bottom: 10;

 color: white;

 font-size: 20;

}

.info-value {

 margin-bottom: 15;

 color: #212121;

 font-size: 24;

}

 Branstein / The NativeScript Book 161

Part 3:
Refining Your

App

 Branstein / The NativeScript Book 162

8
Working with data

This chapter covers

▪ How to use observable objects and observable arrays

▪ How to automatically update UI elements when observables change their value

▪ How a device’s local storage can be used to save data

In the last few chapters, you took a deeper dive into creating apps with NativeScript through the lens of

the Tekmo app. You learned how to design multi-page apps, navigate between pages, and how to organize

and style your UI using layouts and CSS. In the Tekmo app, a lot of time was spent duplicating UI

elements: take the products page as an example (figure 8.1).

 Branstein / The NativeScript Book 163

Figure 8.1 The products page from the Tekmo app, showing several hard-coded products.

Each of the products was hard-coded in the product page’s XML file. Yeah, it’s only six products, but

what if there were dozens of products. Better yet, what if the products changed on a regular basis? In

fact, updating hard-coded UI elements would become cumbersome rather quickly.

Let’s take a different approach: imagine that we pulled the product listings for the Tekmo app from a

file, database, or publicly-accessible API endpoint? After retrieving this data, we could update the product

listing with the retrieved data. This would allow us to write less code and our app would be more dynamic

because we’re no longer hard-coding everything.

In this chapter, we’ll teach you how to write less code and make your apps more dynamic. At the same

time, we’ll be building a new app: the Pet Scrapbook. With the Pet Scrapbook, you’ll be able to capture

the fun moments of your pet’s life by creating virtual scrapbook pages filled with images and captions.

We’ll go through several iterations of the app over the next several chapters, changing the app’s code to

use new aspects of NativeScript as you learn them.

Before we get started with the Pet Scrapbook, there are some new concepts you’ll need to learn so we

can abandon hard-coding everything and write less code. So, how do we write less code, while still allowing

users to create multiple pages with their scrapbook? It may not be obvious, but we’ll do this with

templates.

DEFINITION Templates are a way to create the UI element structure of page, while not adding the

actual text or image data displayed. Once created, the UI elements in a template act as placeholders

for the real element displayed on the screen.

 Branstein / The NativeScript Book 164

In the Pet Scrapbook, we’ll create a template representing the structure of a single scrapbook page.

The template will contain placeholders for a pet’s name, age, the title of the page, images, and captions.

You may still be wondering how this will save you time and allow you to write less code. Let’s think about

this in the context of a real scrapbook. Imagine you’re creating a physical scrapbook and want to add a

page to the book. You get a piece of colored paper and start by organizing the page: measuring and using

a ruler to ensure items are aligned, straight, and in a location similar to other pages in your scrapbook.

You do this for each picture, sticker, and text you add to the page. This sounds time-consuming. But what

if you started with a template: a page that was already laid out with placeholders for the page’s title, your

pet’s name, pictures, and other design elements? Suddenly, adding a new page becomes much easier

because the heavy lifting has been done and you need to worry about only the page’s content.

Using templates in our app will be just like using a template in a real scrapbook. When you add a new

page to the NativeScript pet scrapbook, you’ll be able to use the same template, but display different

details. Because we’re reusing the same template, we’ll also reuse the code we write for the page.

8.1 Databinding

Now that you know about templates, we want to introduce you to how a single UI template can be reused

to display different details. The underlying technology used to do this is called databinding.

DEFINITION Databinding is the process of linking UI elements to objects in code. When a change is

made to a UI element that is linked to an object in code, the change is reflected in the object or

property. UI elements that are linked to objects in code are referred to as being data-bound.

Databinding is just the name for the overall process of linking together a JavaScript object and UI

elements. Databinding is important because this is how we solve the problem of needing to hardcode

products into the product page of the Tekmo app or updating an age field on the Pet Scrapbook app based

on the birthday that a user enters. Before we dive further into using databinding, let’s learn about one

more concept that drives the inner-workings of databinding: observables.

DEFINITION Observables are special JavaScript objects that provide your code with notifications when

one of their values changes.

We like to think of observables like kids in a classroom: every time something changes, they raise

their hands to tell their teacher. It could be a runny nose, they need to use the bathroom, or just want to

show their teacher the cool robot picture they just drew, it really doesn’t matter what changed, but they’ll

raise their hand whenever something changes just to make sure their teacher knows about it. Kids are

just like observable objects (also known as observables), except observables don’t raise their hands, they

raise an event. Figure 8.2 shows how an observable object raises an event when one of its internal values

changes.

 Branstein / The NativeScript Book 165

Figure 8.2 Your app can respond to an observable object when one of its internal values changes.

At this point, you may be wondering how everything ties together. Templates, databinding,

observables, events (oh my)! Together these concepts form the foundation that we will be working with

to solve the hard-coding problem. Figure 8.3 shows the relationship between these 4 concepts.

Figure 8.3 The relationship between databinding, templates, observables, and observable change events.

Databinding describes the act of linking together a UI template and an observable. Once linked, the

template listens for change events to be raised by the observable. When a change happens to an

observable’s value, an event is raised. The registered event listener then responds to the observable’s

change by displaying the observable’s new value.

 Branstein / The NativeScript Book 166

Now that you have a general understanding of databinding, observables, templates, and observable

events, let’s take a look and see how we actually use these in code.

8.2 Observables in action

Go ahead and start a new blank project for the Pet Scrapbook app. Remember you can use the NativeScript

CLI to scaffold out a new project for you by using the tns create command.

tns create PetScrapbook --template tns-template-blank

PLAY You can use the Playground to create your own version of the Pet Scrapbook. You can also follow

along with our version here: https://play.nativescript.org/?template=play-js&id=ihli0Y&v=3.

Like the Tekmo app that you previously created, add a views folder as shown in figure 8.4 to your

project. This is where you will be adding views for the Pet Scrapbook app. The first page that we will be

creating is the Home page, so add the home-page.xml, home-page.js, and home-page.css files to the

views folder.

NOTE Don’t forget to change the page in the app-root.xml file that is loaded when the app loads to the

views/home-page view that we added.

Figure 8.4 The resulting folder structure of the Pet Scrapbook app after scaffolding a blank NativeScript app and

 Branstein / The NativeScript Book 167

creating a views folder.

Let’s start off by creating an observable, setting several values, and seeing how it raises an event

when one of the values changes. Add the code from listing 8.1 to the home-page.js file.

Listing 8.1 The views\home-page.js file creating and observable, setting values, and listening for

changes

var observableModule = require("data/observable");

var pet = new observableModule.Observable();

pet.set("Name", "Riven");

pet.set("Type", "Dog");

pet.set("Age", 3);

pet.on ("propertyChange", function(eventData){ // #A

 var changedPet = eventData.object; // #B

 console.log("Your pet is a " + changedPet.Type + " named "

+ changedPet.Name + " and is " + changedPet.get("Age") + " years old.");

});

pet.set("Age", 4); // #C

#A Creating an event handler

#B Getting the object that changed

#C Updating the value causes the property change event to occur

We think it’s helpful to visualize what’s going on in listing 8.1, so reference figure 8.5, which shows a

sequence diagram of the major events of the observable’s property changed process.

 Branstein / The NativeScript Book 168

Figure 8.5 A sequence diagram describing an observable’s property changed event being raised.

In step 1, the observable module is imported and the pet observable is created.

var observableModule = require("data/observable");

var pet = new observableModule.Observable();

The observable module exposes an object named Observable. At a high level, the Observable object

is just like a plain-old JavaScript object (POJO), except it monitors its properties for changes and raises

an event when a property is changed.

Step 2 sets the name, type, and age properties of the pet observable using the pet.set() syntax.

You’ll notice that this syntax differs from POJOs because you can’t set the value of a property by using

pet.<property name> directly.

TIP To set a property of an observable, use the .set() function.

After we’ve set several properties, we establish a function that that listens for changes to the

observable’s properties (step 3). Every observable object exposes a property change event that we can

listen to and handle when a property on the object changes. When the property changed event is raised,

the observable passes useful data to any function handling the event. We’ve used one of the properties

(object), which is a reference to the observable object. Using this reference, the pet’s name, type, and

age will be displayed in the console.

 Branstein / The NativeScript Book 169

Step 4 updates the pet’s age to 4. When the age is updated, the observable will detect the change and

raise the property change event (step 5), which will be handled by our function and print the pet’s updated

information to the console (step 6).

Go ahead and run the pet scrapbook app and you should see the following results in the console

window (figure 8.6).

Figure 8.6 The console log message that occurred from the property change event when a property of the pet

observable changed.

Observables are just the first step in working with databinding in NativeScript, providing you with an

easy way to listen for and respond to changes that happen to an object. You just learned how to respond

to changes in an observable object in code, but does this mean you need to write code to respond to

every property changed event? Certainly not. When you use observables inside the context of Databinding,

NativeScript takes care of handling the property changed events for you automatically. Let’s take a look

at a basic databinding example.

8.2.1 Property binding

The simplest form of databinding in NativeScript is called property binding. Property binding is when you

link the property of a UI element with the property of an observable. Once linked, changes made to either

the UI element’s property or the observable’s property will be automatically reflected in both places.

 Although you don’t need to know about the inner-workings of property binding, we think it’s important

a you know a little about something special called a bindable object.

DEFINITION Bindable objects are UI elements that are inherited from the Bindable class. The Bindable

class is special because it allows objects inheriting from it to be data bound with an observable.

Property binding inherently requires you to databind between an observable and a bindable UI

element.

NOTE You shouldn’t worry about the bindable class, because it’s not something you will use directly

when developing a NativeScript app. The truth is, you’ll use bindable objects all the time (because

every UI element is bindable), and you won’t really think about the Bindable class. If you want to learn

more about the Bindable class, visit the official NativeScript documentation at

https://docs.nativescript.org/api-reference/classes/_ui_core_bindable_.bindable.html

Let’s take a look at a visual example of how property binding works, then we’ll write some code to

bind an observable and UI element together. Figure 8.7 shows how several UI elements inherit from the

 Branstein / The NativeScript Book 170

bindable class, and how the bindable class enables the UI elements to data bind with an observable object

via the bind() method.

Figure 8.7 Observable object are able to update UI elements derived from the Bindable class because the Bindable

class exposes a common interface that observable objects can talk to.

Let’s see this in action by binding to the text property of a Label element. First, update the view of the

home-page.xml file to include a stack layout and label, as shown in listing 8.2.

Listing 8.2 The views\home-page.xml file

<Page loaded="onLoaded"> //#A

 <StackLayout>

 <Label id=”title” /> //#B

 </StackLayout>

</Page>

#A Bind to the loaded event of the page

#B Give the label an id so we can access it in JavaScript

Notice that we’ve given the label an id so we can easily find it in the UI via JavaScript. Next, update

the home-page.js file by moving the pet observable declaration into the onLoaded function, removing

the property change event, and establishing data binding between the label and the pet observable by

using the bind() function (listing 8.3).

Listing 8.3 The views\home-page.js file showing binding to the text property of a Label element

var observableModule = require("data/observable");

var viewModule = require ("ui/core/view");

exports.onLoaded = function(args){

 var page = args.object;

 var pet = new observableModule.Observable();

 var label = viewModule.getViewById(page, "title"); //#A

 var bindingOptions = { //#B

 sourceProperty: "Name", //#B

 Branstein / The NativeScript Book 171

 targetProperty: "text" //#B

 };

 label.bind(bindingOptions, pet); //#C

 pet.set("Name", "Riven");

}

#A Find the label by it’s id property.

#B The binding option object describes the properties we’ll be binding from (source) and to (target).

#C Bind the label and pet observable together using the binding options.

When you run the pet scrapbook app, you’ll see that the label doesn’t look different from a label that

is defined with static text: <Label text=”Riven” />. Even though the label doesn’t look different,

there’s a lot going on in listing 8.2 and 8.3 to make it look the same. To bind the label’s text property to

the name property of the observable, listing 8.3 does two things:

1. A binding object is used to describe the properties we’ll be binding together, specifying the name

property as the source (or from) property and the text property as the target (or to) property

2. The label is data bound to the pet observable by calling the bind() method.

The bind() method accepts binding options and an observable object as parameters and knows how

to work with the observable object’s on change event (this is the same event that you manually

implemented earlier) to allow data changes to be reflected in both the pet observable and the label. Figure

8.8 shows the pet scrapbook running.

Figure 8.8 A label that has property binding setup in code.

The first time you see the binding syntax in code, it can be a bit confusing. Let’s re-write the bind()

function from listing 8.3 to include the binding options directly in the function call: label.bind({

sourceProperty: "Name", targetProperty: "text" }, pet). Figure 8.9 show the relationship

between this function call and how it links the properties of the label element and pet observable.

 Branstein / The NativeScript Book 172

Figure 8.9 The bind() function links together the label UI element and the per observable.

At this point you may be thinking that property binding sure is a lot of work, and why would you spend

so much time manually binding observables and UI elements together. And you’re right: property binding

is a whole lot of work. It turns out you’ll rarely need to use property binding, instead you’ll use the short-

cut version of property binding, called XML binding. Let’s take a look at XML binding and how it

dramatically reduces the amount of code you write to data bind a UI element and an observable.

One-way databinding versus two-way databinding

Databinding can flow one way or two ways. In one-way data bindings, the data flows from an observable

to the UI or the data flows from the UI to an observable (but not both).

For example, if you use one-way databinding to bind an observable to a text field in the UI, and the

user changes the value of the text field, the linked observable will not be updated.

Keeping the same example in mind, using two-way databinding between the text field and an

observable, you can update both the text field or the observable and affect a change in the linked

property. This is called two-way because it flows data in 2 directions: the UI to the observable and the

observable to the UI.

As you will come to learn, two-way databinding is very powerful and helpful to you as a developer.

When working with data in this book I will be showing you two-way databinding.

 Branstein / The NativeScript Book 173

The difference between one-way databinding and two-way databinding.

8.2.2 XML binding

XML binding does the same thing as property binding: it links an observable property and a UI element’s

property and keeps the two in sync. Even though XML binding acts the same as property binding, it is

much easier to configure and requires very little code to set up. Instead of defining the source and target

properties in JavaScript, you declare the binding relationship between the UI and an observable in a page’s

XML markup.

XML binding in NativeScript uses mustache syntax to denote the binding.

DEFINITION Mustache syntax is a way to denote a special value using curly braces { and }. The syntax

gets its name because the curly brace looks like a sideways mustache. In NativeScript a double curly

brace is used.

Let’s refactor the home page of the pet scrapbook again to swap out the property binding for XML

binding. We’ll start by changing the home-page.xml file by removing the id field of the label, and adding

a data bound text field (listing 8.4).

Listing 8.4 The views\home-page.xml file updated to use XML binding

<Page loaded="onLoaded">

 <StackLayout>

 <Label text="{{ Name }}" /> //#A

 </StackLayout>

</Page>

#A XML binding uses double mustache syntax to denote the data bound property

When using XML binding, you don’t have to locate a UI element and call the bind() method to link it

with an observable. Instead, the double mustache text="{{ Name }}" syntax is used. This syntax is

 Branstein / The NativeScript Book 174

special because it identifies the UI element’s and observable’s properties that will be data bound. In listing

8.4, the text (UI element) and Name (observable) properties will be data bound together.

Now, simply placing the text="{{ Name }}" syntax in the XML markup isn’t enough to make data

binding occur. We’re missing an important item: what observable will be data bound to? To get the answer,

we’ll need to refactor our code in the home-page.js file to remove the property databinding and tell the

page which observable to use by setting the page’s binding context.

DEFINITION A UI element’s binding context identifies the observable object that will participate in data

binding with the UI element. Typically, you set a binding context of a page and create a single

observable used for the page. This way, all elements on the page can share the binding context (and

observable).

Let’s see this in action (listing 8.5).

Listing 8.5 Assigning an observable to the page’s binding context on home-page.js

var observableModule = require("data/observable");

var viewModule = require ("ui/core/view");

exports.onLoaded = function(args){

 var page = args.object;

 var pet = new observableModule.Observable(); #A

 page.bindingContext = pet; #B

 pet.set("Name", "Riven");

}

#A The pet object is an observable that will bind to all elements on the page

#B Setting pet to the page’s binding context establishes it as the page-level observable used for binding

As you’ll see in listing 8.5, we’ve removed the property binding code and replaced it with code to

specify a binding context. The binding context identifies the observable that the page uses in data binding.

Now that you’ve learned about XML data binding, let’s turn our attention to using XML data binding to

build the pet scrapbook app.

BUILDING THE HOME PAGE

The pet scrapbook starts with a home page where a user can navigate to an about page or continue

on to the contents of the scrapbook. We’ll be reusing the home-page.xml and home-page.js files you

created in the previous sections.

Starting with the UI, we’ll add data bound labels for a title and footer, an image, and two buttons. As

you can see in listing 8.6, the data-bound labels use the mustache syntax. We chose to use XML binding

for these fields because the header and footer text isn’t something we want hard-coded in our app.

Listing 8.6 The views\home-page.xml showing XML binding

<Page loaded="onLoaded">

 <ScrollView>

 <StackLayout>

 <Label class="header" text="{{ header }}" /> // #A

 Branstein / The NativeScript Book 175

 <Image src="~/images/home.png" />

 <Label class="footer" text="{{ footer }}" /> // #A

 <StackLayout orientation="horizontal" horizontalAlignment="center" >

 <Button class="marginRight" text="About" />

 <Button class="margineLeft" text="Continue" />

 </StackLayout>

 </StackLayout>

 </ScrollView>

</Page>

#A Binding the text property of a label to a property defined on an observable object

As you’ll recall from earlier in this chapter, using mustache syntax to data bind the header and footer

is only one-half of the equation. If we were to run the Pet Scrapbook app, the header and footer would

be blank, because the page doesn’t yet know which observable to use in data binding. Listing 8.7 sets up

an observable object and sets it to the page’s binding context in the home-page.js file.

Listing 8.7 The views\home-page.js file showing the implementation of an observable for the home

page

var observable = require("data/observable");

exports.onLoaded = function(args) {

 var page = args.object;

 var home = new observable.fromObject({

 header: "Pet Scrapbook",

 footer: "Brosteins ©2016"

 });

 page.bindingContext = home; // #A

};

#A Set the binding context of the home page to the observable we created so it can access the properties in our

UI via mustache syntax

Add the following styles to the home-page.css file (listing 8.8), and run the pet scrapbook.

Listing 8.8 The views\home-page.css file adding style to the home page

.header {

 font-size: 32px;

}

label {

 text-align: center;

 margin-top: 10px;

 margin-bottom: 10px;

}

.footer {

 font-size: 10px;

}

After running the pet scrapbook (figure 8.10), you won’t notice that the labels are data bound;

however, we have made our app more dynamic because the values for the header and footer are no

longer hard-coded in the XML view code.

 Branstein / The NativeScript Book 176

Figure 8.10 The Pet Scrapbook home page updated to use databinding for the title and footer.

Although data binding the home page fields may feel a bit artificial at this point, we’ll continue to use

these same techniques throughout the book, and you’ll see how powerful it can be.

TYING IT ALL TOGETHER

Before we move on, let’s break down what’s happening on this page and visualize how each label was

data bound. In listing 8.7, we established an observable object with two fields: header and footer. By

using the fromObject() method, we can create an observable on-the-fly.
var home = new observable.fromObject(

 { header: "Pet Scrapbook", footer: "Brosteins ©2016" });

We then set the page’s binding to the home observable object: page.bindingContext = home.

Last, we used mustache syntax, to define the properties of the observable object in the XML code of the

Home page.
<Label text="{{ header }}" />

<Label text="{{ footer }}" />

With these three components working together, the home page places Pet Scrapbook into the header

and Brosteins ©2016 into the footer (figure 8.11).

 Branstein / The NativeScript Book 177

Figure 8.11 The home page data binding the header and footer labels with mustache syntax and an observable

8.2.3 Pet scrapbook page

Databinding is not just limited to labels; in fact, you will probably want to bind to additional controls inside

your app so your app is more dynamic. Let’s take a look and see how you can implement databinding on

different UI elements by implementing a scrapbook page in the Pet Scrapbook app.

The scrapbook page will allow users to create a memory of one of his or her pets. In the first iteration

of the scrapbook page we will allow users to enter the following information (as we progress further in

this chapter we will update the scrapbook page to allow multiple pets):

▪ Title

▪ Gender

▪ Birthday

Let’s get started implementing the scrapbook page by adding a scrapbook-page.xml and scrapbook-

page.js file to the views folder of the Pet Scrapbook app. We will be adding gender and birthday fields to

the Scrapbook page first so users can enter some identifying information about their pet. The gender and

birthday fields will introduce you to two new UI elements: the ListPicker element and the DatePicker

element. Listings 8.9 and 8.10 show an example of how to define a list picker and date picker in XML and

bind the list picker to an array of items.

DEFINITION ListPicker is a user interface element used to display a selectable list of values to the user.

To create a ListPicker element, use the XML code <ListPicker >...</ListPicker>.

DEFINITION DatePicker is a user interface element used to display a selectable month, day, and year

to the user. To create a DatePicker element, use the XML code <DatePicker >...</DatePicker>.

Listing 8.9 The views\scrapbook-page.xml with a list picker and date picker element

<Page loaded="onLoaded" >

 <StackLayout>

 Branstein / The NativeScript Book 178

 <DatePicker />

 <ListPicker items="{{ items }}" /> //#A

 </StackLayout>

</Page>

#A The list picker’s items are data bound to the items object of the page’s binding context

Listing 8.10 Binding items to the ListPicker element on the views\scrapbook-page.js

var observable = require("data/observable");

exports.onLoaded = function(args){

 var page = args.object;

 var listItems = new observable.Observable(); //#A

 listItems.items = ["Item 1", "Item 2", "Item 3"]; //#A

 page.bindingContext = listItems; //#B

}

#A An array of three items is set to the items property of the listItems observable

#B The page’s binding context is set to the observable

Figure 8.12 shows the DatePicker and ListPicker elements rendered on native controls on an iOS

device.

Figure 8.12 A native DatePicker element and ListPicker element rendered on an iOS device. The ListPicker element is

bound to a selectable list of items.

 Branstein / The NativeScript Book 179

As you can see the DatePicker and ListPicker elements work the same way that other elements do that

we have discussed up to this point. The one difference you may have noticed is with the ListPicker element.

The ListPicker element’s items property doesn’t bind to just a single value, but instead expects to bind to

an array of items.

Now that you have been introduced to a couple of new controls, let’s continue finishing the Scrapbook

page by adding a title and descriptive labels. We will be using XML binding with all of these controls so

that we can access the data in JavaScript (because eventually we will want to save the scrapbook page

the user has created). Listing 8.11 puts together the new controls (and an old one) alongside databinding

to implement the scrapbook page.

Listing 8.11 The views\scrapbook-page.xml showing more databinding techniques

<Page loaded="onLoaded">

 <StackLayout>

 <Label text="Title: " />

 <TextField class="header" text="{{title}}" />

 <Label text="Age: " />

 <DatePicker date="{{ date }}" />

 <Label text="Gender: " />

 <ListPicker items="{{ genders }}" selectedIndex="{{ gender }}" /> //#A

 <Button tap="onTap" text="Done" />

 </StackLayout>

</Page>

#A Added data binding to the selected index of the list picker so we know which list item is selected

As you can see in listing 8.11, we have added several XML bindings for the DatePicker, TextField, and

ListPicker elements. With the additional bindings that we have added we will be able to access the values

that the user of the application selects or types into these fields. Pay special attention to the date picker’s

date="{{ date }}" property and list picker’s selectedIndex="{{ gender }}" property. The

DatePicker element provides a property named date that can be data-bound to capture the selected date.

Similarly, you can bind to the selectedIndex property of a ListPicker to get the selected index.

Now that we have our UI organized, add the data binding configuration code as shown in listing 8.12.

Listing 8.12 the views\scrapbook-page.js showing how to setup data binding

var observable = require("data/observable");

exports.onLoaded = function(args) {

 var page = args.object;

 var scrapbook = new observable.fromObject({ //#A

 genders: ["Female", "Male", "Other"], //#A

 gender: null, //#A

 date: null, //#A

 title: null //#A

 }); //#A

 page.bindingContext = scrapbook;

};

#A fromObject() is a shortcut that creates an observable from a JavaScript object

 Branstein / The NativeScript Book 180

We’ve seen this before, and the code doesn’t look new, with two exceptions. First, we used the

fromObject() method to create an observable from a JavaScript object. It’s a shortcut, you should use

it.

TIP The fromObject() method is a shortcut for creating an observable from an existing JavaScript

object.

Second, you’ll notice that the scrapbook observable didn’t specifically define the gender and date

properties that were bound to the picker elements. Because of JavaScript’s dynamic nature, you don’t

have to specify them (but if you do, it won’t hurt).

ACCESSING DATA-BOUND INFORMATION

Great work! But, now that we have the UI data bound, how can you access the properties? There’s several

ways to do this, and you’ll learn one of them right now; we’ll point out a second way later in the chapter.

Add the done button’s tap event handler to the scrapbook-page.js file (listing 8.13)

Listing 8.13 Accessing data bound properties on the views\scrapbook-page.js

exports.onTap = function(args) {

 var page = args.object; // #A

 var scrapbook = page.bindingContext; //#B

 console.log("You have made " + scrapbook.title); //#C

 console.log("Age: " + scrapbook.date.toLocaleDateString()); //#C

 console.log("Gender selected:" + scrapbook.genders[scrapbook.gender]); //#C

}

#A args.object is a reference to the page object

#B bindingContext variable contains a reference to the scrapbook observable

#C After the user has entered values for into the UI controls, you can access the properties in JavaScript because

the fields are databound

In listing 8.13, we are using a button tap event to access the binding context the scrapbook page.

When a tap event is handled, the handler passes a reference to the page via the object property, so

args.object is a reference to the page. With a reference to the page, the bindingContext property

has a reference to the original observable, which contains all the data bound properties.

WARNING Watch out for the list picker’s selectedIndex property: it is the selected index, not the

selected list item. To get access to the actual selected list item value, you’ll need to do a little work and

lookup the list item value at the selected index.

When run, the Scrapbook page logs the values of these properties to the console, as seen in figure

8.13.

 Branstein / The NativeScript Book 181

Figure 8.13 The output of the console logging of the values that were data-bound on the scrapbook page.

Although logging values to the console isn’t all that interesting it is important to understand that you

have access to the all the properties of an observable that is set as the binding context of a page. In later

chapters and examples, we will implement more complex business logic and manipulate the properties

that are data bound. For now, let’s take a look at something more interesting that you can do with

databinding: binding expressions.

8.2.4 Binding Expressions

Wouldn’t it be nice if the pet’s name were displayed in the page’s title, but with some text added on to

the end, like “Riven’s Scrapbook Page?” Now, think about how you’d do that with the tools you have at

your disposal. So far, you’ve only learned how to data bind to the entirety of a field; that is, replace the

entire contents of a label’s text property with a data-bound value.

So, how could you display “Riven’s Scrapbook Page”? One option is to use two labels: one data-bound

to the title, and a second with static text of Scrapbook Page. Yuck!

A second option is to use a single label data-bound to the title, while incorporating a binding

expression.

DEFINITION A binding expression is logic or a calculation that applied to an XML binding directly in the

UI, allowing you to transform the data-bound value displayed.

Many basic logic operators are available for use within expression bindings. For the Pet Scrapbook app,

we’ll use a unary operator to concatenate two strings together to create “Riven’s Scrapbook Page” with a

single label.

NOTE For a full list of all supported operators that you can use in binding expressions, please view the

official NativeScript documentation at https://docs.nativescript.org/core-concepts/data-

binding#supported-expressions.

Binding expressions extend the mustache syntax. When using a binding expression, we use a comma

to delimit the property that we want to bind to and the expression (with the property coming first). Listing

8.14 shows how to create a binding expression that concatenates two strings together. Change the first

Label element in the scrapbook-page.xml file to use a binding expression:

Listing 8.14 The views\scrapbook-page.xml updated with a binding expression that concatenates

two strings together

 <Page loaded="onLoaded">

 <StackLayout>

 <Label text="{{ title, title + ' Scrapbook Page' }}" /> // #A

 <TextField class="header" text="{{ title }}" hint="Enter title..."/>

<Label text="Age: " />

 <DatePicker date="{{ date }}" />

 <Label text="Gender: " />

 <ListPicker items="{{ genders }}" selectedIndex="{{ gender }}" />

 Branstein / The NativeScript Book 182

 <Button tap="onTap" text="Done"/>

 </StackLayout>

</Page>

#A Adding a binding expression to concatenate a static string and a data-bound string together in the label field

Remember, the first field of a binding expression (the value before the comma) is the data-bound

property. Once the property is declared before the comma, it can be used in the binding expression, which

follows the comma. In listing 8.4, the binding expression displays the title field concatenated with

Scrapbook Page.

Run these updates in your emulator and enter your pet’s name in the text field. You’ll notice the header

will dynamically change as you type. You should see something like figure 8.14.

Figured 8.14 A binding expression showing string concatenation. The expression is applied to a label that binds to the

same property as the text field.

One important note is that you can use the same XML binding for multiple controls. As you can see

from figure 8.14, you are able to bind the title of the scrapbook page that a user has enter into a text

field to a label at the same time. When you change the value of the text field you will notice that the label

changes at the same time as well! NativeScript is handling all the property changed events for you to set

the values in both of the UI elements.

BINDING EXPRESSION FUNCTIONS

Binding expressions can be much more advanced than just simple string concatenation. In fact, you

can have a binding expression that uses any function that you define in JavaScript. Let’s look back at the

age field of the scrapbook page. The age is data-bound to a date picker’s date property, which looks a

little strange.

<Label text="Age: " />

<DatePicker date="{{ date }}" />

If you pay close attention, you’ll notice that the pet’s age is described as a date, which isn’t right. An

age is described as a single number, not a date. Ideally, I’d like to change the UI by adding a data-bound

label to display the pet’s age based upon the birth date selected. Dynamically calculating the pet’s age

sounds like a great use case for a binding expression function.

Listings 8.15 and 8.16 show the update XML code and JavaScript code needed to implement a custom

age calculation function and display it on the UI using a binding expression.

 Branstein / The NativeScript Book 183

Listing 8.15 The views\scrapbook-page.xml file updated with a custom function in a binding

expression

<Page loaded="onLoaded">

 <StackLayout>

 <Label text="{{ title, title + ' Scrapbook Page' }}" />

 <TextField class="header" text="{{ title }}" hint="Enter title..."/>

 <Label text="{{ 'Age: ' + calcAge(date) + ' years old'}} " /> //#A

 <DatePicker date="{{ date }}" />

 <Label text="Gender: " />

 <ListPicker items="{{ genders }}" selectedIndex="{{ gender }}" />

 <Button tap="onTap" text="Done"/>

 </StackLayout>

</Page>

#A Calling a custom function on the observable object that performs an age calculation. You can pass data-

bound properties or other values to a custom function. You can also combine the custom function with a binding

expression.

Listing 8.16 The views\scrapbook-page.js file showing a function calculating age and used in a

binding expression

exports.onLoaded = function(args) {

 var page = args.object;

 var scrapbook = new observable.Observable({

 genders: ["Female", "Male", "Other"],

 gender: null,

 date: null,

 title: null,

 calcAge: function(birthDate){ //#A

 var now = Date.now();

 var diff = Math.abs(now - birthDate) / 1000 / 31536000; //#B

 return diff.toFixed(1);

 }

 });

 page.bindingContext = scrapbook;

};

#A Implementing a function on the observable object that is available to use in the UI with XML databinding

#B Math.abs() returns the number of milliseconds different, so we divided by 1000 to get seconds, then by the

number of seconds in a year (265 * 24 * 3600 = 31526000) to get years

When setting up the binding expression for the title of the Scrapbook page we just used a unary

operator. When using a custom binding expression, we can bind to a property on our observable that is a

custom function instead of just a simple type. NativeScript even handles passing the parameters into the

method for you.

TIP You can combine binding expressions with custom functions for more flexibility within your UI. Just

make sure the function is a property on your observable.

Figure 8.15 shows the resulting scrapbook page after updating it with a more complex binding

expression.

 Branstein / The NativeScript Book 184

Figure 8.15 The age label field is bound to a custom binding expression that calculates the age of the pet based on the

birthday entered.

Hopefully, you have started to see how databinding is going to assist you while you develop

NativeScript apps. Now that you have a solid foundation on the basics of observables and databinding, it

is time to tackle binding to arrays.

8.3 Observable arrays

Binding to arrays isn’t much different than binding to a single object. In fact, we’ve already bound to the

genders array to display a list of available gender options: genders: ["Female", "Male",

"Other"]. Just like this example, you typically bind to an array when you want to display (or select from)

a list of values. But what if one of the values in the data-bound array changes? Will the data-bound UI

element automatically update? It depends. Take the following code snippet as an example:

 var scrapbook = new observableModule.fromObject({

 genders: ["Female", "Male", "Other"]});

If you define your array as a property of an observable, the observable will only notify its data-bound

partner that the observable has changed if the entire array is replaced. Replacing an array of 3 items may

not seem like a lot of work, but imagine the array had 100 items, or 1,000 items: that is an awful lot of

inefficient work to do (replacing the entire array object), just to get the observable to report a data

change. That’s why there’s a special observable object called an observable array.

DEFINITION Observable arrays are data objects (like observables) that provide your code with

notifications when an item is added, removed, or changed from an array.

Creating and using an observable array is very similar to the observable object you learned earlier,

except it requires a different NativeScript core module. Listing 8.17 shows how to access the observable

module and create an observable array.

 Branstein / The NativeScript Book 185

Listing 8.17 Creating an observable array

var observable = require("data/observable-array");

var pets = new observable.ObservableArray("Riven", "Pittens"); //#A

pets.push("Nibbles"); //#B

#A You can initialize an observable array by passing in items to the ObservableArray() function

#B Additional items can be added to the array

As you can see from listing 8.17, observable arrays work just like a normal array in JavaScript (you

can push and splice them as needed). When you add and remove items to the array then the

propertyChange event of the observable will fire. The property change event for an observable array

works just like a regular observable’s event, so we’re not going to go into detail. Instead, let’s take a look

and see how we can make the observable array work inside of the Pet Scrapbook app.

8.3.1 Using an observable array to build master-detail pages

So far, the Pet Scrapbook app isn’t much of a scrapbook because it only has a single scrapbook page and

users can only enter information for a single pet. Let’s refactor the scrapbook so users can add information

for multiple pets.

Over the next several sections, we’ll be changing the main page of the app to show a list of all the

scrapbook pages. From the main page, users will be able to add new pages or tap one of the existing

pages to view the details. These changes will form the foundation for a standard UI design you’ll use over

and over: master-detail.

DEFINITION Master-detail UI pattern describes a relationship (and navigation) between two pages and

a collection of data. The master page contains a brief summary of many data points, and a user can

navigate to a separate page displaying the detailed view of each data point.

In the Pet Scrapbook app, the data points we’ll be tracking are scrapbook pages. The master page will

be a listing of each page, with the detail pages displaying all of the information (pet’s name, age, gender,

etc.).

To build the master-detail pages, we’ll be using an observable array to hold the scrapbook pages. The

observable array will be data bound to a new UI element, the list view, to display the list of scrapbook

pages on the master page.

DEFINITION The list view is a UI element used to display a list of items. The ListView element supports

a templating system so you can create a complex collection of UI elements that is displayed for each

item in the list. To create a ListView element, use the XML code <ListView >…</ListView>.

Although list views can be data bound to simple arrays, data binding to an observable array is ideal

because the list view’s UI is automatically updated as items are added, removed, and updated in the

observable array. Listing 8.18 shows the an updated scrapbook-page.xml page with a list view. The list

view on this page will eventually allow us to add multiple pets to our scrapbook.

Listing 8.18 The views\scrapbook.xml page updated with a list view

 Branstein / The NativeScript Book 186

<Page loaded="onLoaded">

 <StackLayout>

 <ListView items="{{ pages }}" itemTap="onItemTap"> //#A

 <ListView.itemTemplate> //#B

 <StackLayout>

 <Label text="{{ title, title + ' Scrapbook Page' }}" /> //#C

 </StackLayout>

 </ListView.itemTemplate>

 </ListView>

 </StackLayout>

</Page>

#A The pages property is an observable array of scrapbook pages

#B All content defined inside of an item template will be rendered once for each item in the pages observable

array

#C The title property binds to a property on each array item

NOTE The list view template can only have one child property. If you intend to have multiple UI

elements displayed for each item, you’ll need to place them inside a layout container.

Notice that we have added a list view to this page and a template for the list view. The initial

databinding for the list view is set via the items property. In listing 8.18, an observable array named

pages contains all of our scrapbook pages. For each item in the data bound array, the contents of the

item template will be displayed in the UI. When each item is displayed, any data-bound UI elements in

the item template (like the label data-bound to the title property) will be bound to each item of the array.

Now that we have updated the UI code, we still need to update our JavaScript code to add an

observable array names pages (listing 8.19).

Listing 8.19 The views\scrapbook-page.js updated to bind data to the list view

var observable = require("data/observable");

var observableArray = require("data/observable-array");

exports.onLoaded = function(args) {

 var page = args.object;

 var calcAge = function(year, month, day){

 var date = new Date(year, month, day);

 var now = Date.now();

 var diff = Math.abs(now - date) / 1000 / 31536000;

 return diff.toFixed(1);

 }

 var genders = ["Female", "Male", "Other"];

 var emptyScrapbookPage = new observable.fromObject({

 genders: genders,

 calcAge: calcAge

 });

 var filledScrapbookPage = new observable.fromObject({

 genders: genders,

 title: "Riven's Page",

 calcAge: calcAge,

 gender: 0

 });

 var scrapbook = new observable.fromObject({

 Branstein / The NativeScript Book 187

 pages: new observableArray.ObservableArray(emptyScrapbookPage,

filledScrapbookPage)

 }); //#A

 page.bindingContext = scrapbook;

};

#A The binding context for the scrapbook now contains an observable array. Observables can contain other

observables or objects that are not observable.

When you run this example, you’ll see the updated Scrapbook page that has added an observable

array containing two pages (figure 8.16).

Figure 8.16 The resulting ListView element that has been databound to an observable collection with 2 elements in it. A

list view template is used to render each item in the collection.

NOTE Depending on the emulator device version that you are running on, you may have to scroll your

view to see both observables that have been bound to the observable array.

You may have noticed, there is no way for the user to update the pages that are represented by the

items in the master page list view. We’ll need to update the Pet Scrapbook so that when a user taps on

an item in the list view, we navigate to a detail page where the data can be updated. To respond to

tapping a list item, we’ll use the itemTap event of the ListView element. In the event handler, we’ll

navigate to the detail page, passing along our observable array and the index of the array we’d like to

view. Update the scrapbook-page.js to code in listing 8.20. Don’t worry if the changes seem

overwhelming: we’ll walk you through each of them.

Listing 8.20 The views\scrapbook-page.js updated to implement the tap event of the list view

var observable = require("data/observable");

var observableArray = require("data/observable-array");

var frame = require("ui/frame");

function scrapbookPageModel(){ // #A

 Branstein / The NativeScript Book 188

 var model = new observable.Observable();

 model.genders = ["Female", "Male", "Other"];

 model.calcAge = function(year, month, day){

 var date = new Date(year, month, day);

 var now = Date.now();

 var diff = Math.abs(now - date) / 1000 / 31536000;

 return diff.toFixed(1);

 };

 return model;

}

exports.onLoaded = function(args) {

 var page = args.object;

 var scrapbook;

 if(page.navigationContext != null) { // #B

 scrapbook = page.navigationContext.model;

 }

 else {

 scrapbook = new observable.fromObject({

 pages: new observableArray.ObservableArray(new scrapbookPageModel())

 });

 }

 page.bindingContext = scrapbook;

};

exports.onItemTap = function(args) { // #C

 var page = args.object;

 var scrapbook = page.bindingContext;

 frame.topmost().navigate({

 moduleName: "views/scrapbookUpdate-page",

 context: { model: scrapbook, index: args.index } //# D

 });

};

#A Define a reusable model for the each scrapbook page

#B Check to see if this is the first time the page was loaded or not

#C Implementation of the list item tap event handler

#D Pass the scrapbook model and index of the page we want to update to the page we are navigating to

We made several changes to the JavaScript code for the scrapbook page. The first thing we added was

the scrapbookPageModel() function. The next thing that we did is define a function is used as a model

for each scrapbook page in the array. This is important because it helps to make our code more

maintainable as we continue adding features to the Pet Scrapbook app. Next, we have updated the load

event of the page to check if we have data in the navigation context when the page is loaded. This object

will be null the first time we load the page (more on this in just a moment when we define the update

page). The last item that we have updated on the scrapbook page is the implementation of the tap event

for a list view item. When an item is tapped, we navigate to the update page and use the navigation

 Branstein / The NativeScript Book 189

context to pass the scrapbook model and the index of the item that was clicked to the new view. Listings

8.21 and 8.22 show the definition of the update page.

Listing 8.21 The views\scrapbookUpdate-page.xml page

<Page loaded="onLoaded"> // #A

 <StackLayout>

 <Label text="{{ title, title + ' Scrapbook Page' }}" />

 <TextField class="header" text="{{ title }}" hint="Enter title..."/>

 <Label text="{{ 'Age: ' + calcAge(year, month, day) + ' years old'}} " />

 <DatePicker year="{{ year }}" month="{{ month }}" day="{{ day }}" />

 <Label text="Gender: " />

 <ListPicker items="{{ genders }}" selectedIndex="{{ gender }}" />

 <Button tap="onDoneTap" text="Done"/>

 </StackLayout>

</Page>

#A Move the page model definition to its own xml view

Listing 8.22 The views\scrapbookUpdate-page.js file implementing the update code in a separate

view

var observable = require("data/observable");

var frame = require("ui/frame");

var scrapbook; // #A

exports.onLoaded = function(args) {

 var page = args.object;

 var index = page.navigationContext.index;

 scrapbook = page.navigationContext.model

 page.bindingContext = scrapbook.pages.getItem(index); // #B

};

exports.onDoneTap = function(args) {

 var page = args.object;

 frame.topmost().navigate({ // #C

 moduleName: "views/scrapbook-page",

 context: { model: scrapbook } //#C

 });

};

#A Store a reference to the scrapbook model so it can be sent back later

#B Set the binding context of the page to the page that was selected from the list view

#C Set the navigation context to the scrapbook when done is tapped

When an item is tapped in the list view, the page in listings 8.21 and 8.22 is loaded and shown to the

user. When the update page is loaded, we use the data that is passed in the navigation context and bind

the appropriate model to the update page by using the index of the tapped item.

Now that we have properly handled the itemTap event, we are able to update and change the

information of each scrapbook page; however, we still have an issue because the user can’t add more

scrapbook pages to the scrapbook! Let’s solve this problem and learn about another UI element called the

action bar.

 Branstein / The NativeScript Book 190

DEFINITION The action bar is a UI element used to display a header in an application. The ActionBar

element is generally used to display a title as well and other controls in an application. To create an

ActionBar element, use the XML code <ActionBar >…</ActionBar>.

We will be using the action bar to allow users to add new pages to the scrapbook. Let’s take a look

and see how to implement the action bar.

8.4 Action bar

The ActionBar element is going to help us finish polishing off the Pet Scrapbook app. You are probably

already familiar with the action bar concepts from apps that you may use on your own device (figure 8.17

shows the common action bar pattern that many mobile apps use); the action bar serves the dual purpose

or displaying information at the top of the app and containing controls or buttons for the user. In the case

of the Pet Scrapbook app, we’ll use the action bar to display to title of the app and a button to add

additional scrapbook pages.

Figure 8.17 The common layout of a mobile app showcasing the location of an action bar versus the content of a page.

We will implement the action bar on the main page of the scrapbook app where we have the list of

scrapbook pages. Listing 8.23 shows the updated scrapbook-page.xml file to with the newly included

ActionBar element.

Listing 8.23 The views\scrapbook-page.xml file updated to include and action bar

<Page loaded="onLoaded">

 <Page.actionBar> // #A

 <ActionBar title="Pet Scrapbook" > // #B

 <ActionItem tap="onAddTap" ios.position="right" // #C

 text="Add" android.position="actionBar"/> //#C

 Branstein / The NativeScript Book 191

 </ActionBar>

 </Page.actionBar>

 <StackLayout>

 <ListView items="{{ pages }}" itemTap="onItemTap">

 <ListView.itemTemplate>

 <StackLayout>

 <Label text="{{ title, title + ' Scrapbook Page' }}" />

 </StackLayout>

 </ListView.itemTemplate>

 </ListView>

 </StackLayout>

</Page>

#A Defining an ActionBar element

#B Setting the title of the ActionBar element

#C Adding a control to the ActionBar element

#C Setting the position and text of the ActionBar element on iOS and Android

In listing 8.23 we have added an action bar to the page. Notice that an action bar can have multiple

children. The children of the ActionBar element can be labels, buttons, or in this case action items.

DEFINITION An action item is a UI element that is used as a control inside an ActionBar element. Action

items act much like a button but must be placed inside of an action bar. To create an ActionItem

element, use the XML code <ActionItem />.

Although you may be tempted to use a button, there are advantages to using an action item inside of

an action bar. The advantage to using an action item over a button is that specific properties pertaining

to an action are exposed by the action item. For example, in listing 8.23 we created an action item inside

of our action bar and set specific position properties for iOS and Android.

NOTE The action bar is a good example on how cross-platform mobile app development can vary

significantly by platform. On the Android platform, there is a concept of an action bar and an options

(overflow) menu. The Android options menu is an automatic area that Android places action items that

can’t fit into the action bar. On iOS, the concept of an options (overflow) menu don’t exists. Because

of these differences, there is no one-way to define the placement of action items.

Tables 8.1 and 8.2 show the other positions (and the default positions) that we could have used for to

position the action item within the action bar.

Table 8.1 Action item positioning options for Android

Position Description

actionBar (default) The action item is placed in the Android action bar

popup The action item is placed in the options (overflow) menu

actionBarIfRoom

The action item is placed in the action bar if there is room

else it will be placed in the options menu

 Branstein / The NativeScript Book 192

Table 8.1 Action item positioning options for iOS

Position Description

left (default) The action item is placed on the left side of the action bar

right The action item is placed on the right side of the action bar

When defining the action item, we used databinding to bind the tap event the same way we would

normally do with a regular button. Listing 8.24 shows the updated code to handle the on tap event of the

action item so users can add new scrapbook pages to their scrapbook.

Listing 8.24 The views\scrapbook-page.js file updated to handle the tap event of an action item

var observable = require("data/observable");

var observableArray = require("data/observable-array");

var frame = require("ui/frame");

function scrapbookPageModel(){

 var model = new observable.Observable();

 model.genders = ["Female", "Male", "Other"];

 model.calcAge = function(year, month, day){

 var date = new Date(year, month, day);

 var now = Date.now();

 var diff = Math.abs(now - date) / 1000 / 31536000;

 return diff.toFixed(1);

 };

 return model;

}

exports.onLoaded = function(args) {

 var page = args.object;

 var scrapbook;

 if(page.navigationContext != null) {

 scrapbook = page.navigationContext.model;

 }

 else {

 scrapbook = new observable.fromObject({

 pages: new observableArray.ObservableArray(new scrapbookPageModel())

 });

 }

 page.bindingContext = scrapbook;

};

exports.onAddTap = function(args) { // #A

 var page = args.object;

 var scrapbook = page.bindingContext;

 scrapbook.pages.push(new scrapbookPageModel()); // #B

 Branstein / The NativeScript Book 193

 frame.topmost().navigate({

 moduleName: "views/scrapbookUpdate-page",

 context: { model: scrapbook, index: scrapbook.pages.length - 1 } // #C

 });

};

exports.onItemTap = function(args) {

 var page = args.object;

 var scrapbook = page.bindingContext;

 frame.topmost().navigate({

 moduleName: "views/scrapbookUpdate-page",

 context: { model: scrapbook, index: args.index }

 });

};

#A Implement the event handler for action item on tap

#B Add a new scrapbook page to the scrapbook

#C Pass data to the update view

Figure 8.18 shows what the ActionBar elements looks like inside the Pet Scrapbook app.

Figure 8.18 The Pet Scrapbook app showing an action bar with an action item button.

Just like a normal button, you can bind to the tap event with an action item. When the action item is

tapped we go ahead and create a new scrapbook page and add it to our observable array. To pass data

to the update page, we use the navigation context. When passing data to the update view we pass the

scrapbook and the index of the page that user wants to update within the array.

PLAY Check out this chapter’s final code version in the Playground at

https://play.nativescript.org/?template=play-js&id=ihli0Y&v=26.

8.5 Summary

In this chapter, you learned how to do the following:

▪ Implement databinding using multiple techniques

▪ Use the action bar with an action item to create a header in an app

▪ Use a ListView element and a list view item template to simplify your view code

 Branstein / The NativeScript Book 194

▪ Use databinding to create a dynamic UI

8.6 Exercise

• Add a description field to the update page and bind it the page model

• Modify the list view item template to display the age of the pet

8.7 Solutions

• Update the scrapbookUpdate-page.xml

<TextField text="{{ description }}" hint="Enter description..."/>

• Update the listView template to include the calcAge function:

<ListView.itemTemplate>

 <StackLayout>

 <Label text="{{ title, title + ' Scrapbook Page ' + '(' + calcAge(year, month, day) + ')

years old'}}" />

 </StackLayout>

</ListView.itemTemplate>

 Branstein / The NativeScript Book 195

9
Native hardware

This chapter covers

▪ How to load and save app data to a file

▪ How to use the device’s camera to take and save pictures

▪ How to use GPS and WiFi signals to determine your location

In the first eight chapters of the book, you learned the basics of NativeScript: how it works, how apps are

organized, how to create pages, how to add various UI elements to these pages, and how to manage

data-entry using data binding. Through these topics, we laid the foundation of your NativeScript

knowledge. In fact, you’ll use that knowledge in every app you build. Even though these topics are

foundation, they’ve focused on showing information on the screen of a mobile device, while leaving out

an important aspect of mobile app development: interacting with native mobile device hardware.

On the surface, you may think using native mobile hardware components is difficult. Think about the

number of Android and iOS devices that are on the market. Now think about the variety between devices:

most devices are truly different: cameras, GPS modules, NFC (or no NFC), and even different Bluetooth

specifications. Each device comes with a different set of capabilities, and with each, the potential for slight

modifications to the underlying APIs. Because of these differences, it can be difficult to write code once

and have it work across all the platforms. But, don’t worry. NativeScript approaches this problem by

abstracting commonalities between platforms and exposing a common API within the core modules.

In this chapter, you will learn about the core module APIs you can use to interact with the most

common native hardware components of mobile devices: the file system, GPS, and camera. We’ll start by

updating the Pet Scrapbook app to use the file system of a device, so users of the app can save the

scrapbook pages that they make. After this change, we’ll continue to update the Pet Scrapbook to take

and save pictures. Finally, you’ll learn how to use the GPS to capture the location where your picture was

taken.

 Branstein / The NativeScript Book 196

9.1 The file system module

In the last chapter, you learned how to create more dynamic UIs with data-binding. We also reorganized

the Pet Scrapbook to create parent and child views, so the app was better-organized. While we were

reorganizing the app, you may have noticed that all the pet data entered was deleted each time the app

loaded. That’s because we never saved the data: it was used only when the app was running and removed

as soon as the app was closed. Truthfully, we can’t imagine a scrapbook app that deletes its data every

time it’s closed. In fact, not being able to save scrapbook pages makes the app unusable. Let’s fix it.

Take a minute and think of a few ways you might solve this problem. Feel free to pull from any

experience writing desktop, web, or mobile apps. Here’s a few approaches we thought of:

1. Store the data in an external database, perhaps accessed via a web service. Each time the app

starts, we could query the web service, request the saved data, and display it in the app. With

each page we add or update, we could save the data back to the database using the same web

service.

2. Store the scrapbook data locally (in a file or database), reading and updating the contents of the

file as needed.

Both approaches would work just fine for the Pet Scrapbook, but this book is about working with

NativeScript and mobile device hardware. So, let’s look closer at the second approach and storing

scrapbook data in a device’s file system.

9.1.1 Using the file system module

To store data in a device’s file system, you use the file system module.

DEFINITION The file system module is NativeScript core module. This module allows you to interact

with the native file system of the device to find, retrieve, and store files and to interact with files in text

or binary format.

NOTE If your app is deleted from the device, all the data stored on the device using the file system

module will also be removed.

In the Pet Scrapbook, we want to store pet information entered into each page so we don’t lose it

when the app reloads. Using the file system module is straightforward, but let’s review the basics of

interacting with the file system before we apply in our app. Listing 9.1 shows how to store data in the file

system, formatted as a JSON string.

Listing 9.1 Storing and retrieving a text file in NativeScript

var fileSystemModule = require("file-system"); // #A

exports.onLoaded = function(){

 var fileName = "myFile.json";

 var file = fileSystemModule.knownFolders.documents().getFile(fileName); //#B

 var data = {name: "Brosteins", type: "filesystemexample"};

 var jsonDataToWrite = JSON.stringify(data);

 Branstein / The NativeScript Book 197

 file.writeText(jsonDataToWrite); // #C

 console.log("Wrote to the file: " + jsonDataToWrite);

 var jsonDataRead = file.readTextSync(); //#D

 console.log("Read from the file: " + jsonDataRead);

 file.remove(); //#E

};

#A To use the file system module, you need to import it

#B Use the documents folder to store offline files that your app needs

#C Use the reference to a file to write data to the file system

#D Use the reference to the file to read the data. Data can be read synchronously or asynchronously

#E Delete the file

As you can see in listing 9.1, the file system module is used to access the file system of a device.

When accessing the file system of a device, we are able to read and write files to the device in specific

locations that our app has access to using the readTextSync() and writeText() functions. Using

these functions, listing 9.1 references a file named myFile.json, then writes and read following the JSON

object:

{name: "Brosteins", type: "filesystemexample"}

TIP Why JSON? JSON is easy to read, easy to write, and is the de facto text-based format for universal

data interchange via JavaScript.

You’ll also notice that listing 9.1 references a property on the file system module named

knownFolders. Each NativeScript app has common folders that you can access using the file system

module; these common folders are called known folders. Figure 9.1 shows the two different known folders

that every NativeScript app can access: documents and temp.

 Branstein / The NativeScript Book 198

Figure 9.1 The known folders accessible to each NativeScript app.

Both known folders are private, meaning that they are only accessible to your app. The temp folder is

generally used for caching or storing temporary data for your app (such as a webpage that we may be

showing to the user in a pop up window), and the documents folder is for more permanent storage in

your app. Permanent data for our app would be any data that we would want to maintain between user

sessions, such as user-entered data, images that a user takes with the camera, or the saved state of a

game.

HANDLING BINARY DATA

You just learned how to read and write text data to the file system, but you can also write binary data.

TIP You can write a binary data to a file by using the writeSync() function.

Even though we’ll be working with text data in this chapter mostly, working with files in a binary format

can come in handy when working with images or videos.

9.1.2 Integrating the file system module into the Pet Scrapbook

Now that you’ve learned the basics of the file system module, let’s jump back into the Pet Scrapbook app

and update it so it persists the data to the file system.

In chapter 8, we you’ll recall that we passed the entire scrapbook model to the update page when a

new scrapbook page was added or an existing scrapbook page list item was tapped (listing 9.2).

Listing 9.2 The views\scrapbook-page.js handling the tap event of an action item

 Branstein / The NativeScript Book 199

exports.onAddTap = function(args) {

 var page = args.object;

 var scrapbook = page.bindingContext; //#A

 scrapbook.pages.push(new scrapbookPageModel());

 frame.topmost().navigate({

 moduleName: "views/scrapbookUpdate-page",

 context: { model: scrapbook, index: scrapbook.pages.length - 1 } //#A

 });

};

exports.onItemTap = function(args) {

 var page = args.object;

 var scrapbook = page.bindingContext; //#A

 frame.topmost().navigate({

 moduleName: "views/scrapbookUpdate-page",

 context: { model: scrapbook, index: args.index } //#A

 });

};

#A The scrapbook is an array of all scrapbook pages

Listing 9.2, recaps how data flows in the app at the end of chapter 8. The entire collection of scrapbook

pages (the scrapbook variable) and the index to update is passed to the update page.

NOTE Passing the entire collection of scrapbook pages around the app may have seemed a bit

confusing, especially because update page is only concerned about a single scrapbook page. We chose

this approach in chapter 8 for two reasons: it helped to demonstrate different data and page-binding

techniques in NativeScript and it was a simple way to get all the data that each page needed.

Now that we’ve learned about the file system module, we don’t need to pass the entire collection of

scrapbook pages around the app: we can retrieve and save individual pages as needed.

Before we dive right in to the code, check out figure 9.2, which describes how the Pet Scrapbook will

change after we integrate the file system module.

Figure 9.2 After integration of the file system to the Pet Scrapbook, single page objects instead of the entire list will be

passed to the update page.

 Branstein / The NativeScript Book 200

After the file system module is integrated, we’ll store each page to the file system of the device. This

will allow us to pass a single item to the update page. After the item has been updated, it will be saved

back to the file system. Upon navigating back to the list of pages, we’ll reload all the items from the file

system. Figure 9.3 shows a breakdown of the responsibilities of these two pages.

Figure 9.3 The responsibilities of the different pages of the Pet Scrapbook app.

As shown in figure 9.3, each page of the Pet Scrapbook app will have a unique purpose that matches

the master/detail pattern described in chapter 8. The master page (scrapbook page) is responsible for

displaying a list of items. The detail page (scrapbook update page) is responsible for updating the fields

for a single item that is selectable in the master page.

Ok. Now that you understand where we’re headed, let’s get started with some code. We’ll be

refactoring the app with 5 steps:

▪ Step 1: Add a file system service

▪ Step 2: Add a unique identifier to a scrapbook page

▪ Step 3: Refactor the scrapbook list page to use the file system service

▪ Step 4: Refactor the navigation context passed to the update page

▪ Step 5: Refactor the update page to save new (and updated) pages

STEP 1: ADD A FILE SYSTEM SERVICE

The master and detail pages of the app will be sharing some functionality of the file system (reading and

writing JSON data), so we think this is a great opportunity to break out some of that logic into a reusable

code module that can be referenced on multiple pages. We like to refer to reusable modules as service

classes or service modules.

DEFINITION A service class/module is a collection of reusable code that can shared throughout an

application to perform a specific group of related functionalities. Service classes/modules typically

create an internal API or intermediate layer of functionality in your code and sit between the front-end

 Branstein / The NativeScript Book 201

UI layer of your application and data or file system access layers. Service classes/modules generally

contain business logic.

Our service class will handle all the access to the file system, so let’s call it the file system service.

Add a new folder to the Pet Scrapbook called data (to house all of the data-related service classes) and

add a file to it called fileSystemService.js.

TIP We have added the file system service to folder named data. This convention helps to keep our

code organized by storing files that are associated with data access or data persistence in the same

place. Keep this in mind as you create more components and features in apps that you are working on

to help keep your code more organized and maintainable.

Figure 9.4 shows the resulting file structure of the Pet Scrapbook app.

Figure 9.4 The file structure of the Pet Scrapbook app after adding the file system service.

After you have created the file system service, add the content of listing 9.3 to the file.

NOTE Listing 9.3 uses a JavaScript feature called prototypical inheritance. If you haven’t run across

prototypical inheritance before, it’s not that bad. Just think of it as a way of defining different functions

for the file system service. We prefer to use this approach because it defines a function for each instance

of the file system service that we instantiate in code. To learn more about prototypical inheritance in

 Branstein / The NativeScript Book 202

JavaScript you can visit: https://developer.mozilla.org/en-

US/docs/Web/JavaScript/Inheritance_and_the_prototype_chain.

Listing 9.3 The data\fileSystemService.js file that will be used for file system interactions

var fileSystem = require("file-system"); // #A

var fileSystemService = function () {

 this.file = fileSystem.knownFolders.documents().getFile("scrapbook.json");

};

fileSystemService.prototype.getPages = function () { // #B

 var pages = [];

 if (this.file.readTextSync().length !== 0) {

 pages = JSON.parse(this.file.readTextSync()); // #C

 }

 return pages;

}

fileSystemService.prototype.savePage = function (scrapbookPage) { // #D

 var pages = this.getPages();

 var index = pages.findIndex(function (element) { // #E

 return element.id === scrapbookPage.id;

 });

 if (index !== -1) {

 pages[index] = {

 id: scrapbookPage.id,

 title: scrapbookPage.title,

 gender: scrapbookPage.gender,

 year: scrapbookPage.year,

 month: scrapbookPage.month,

 day: scrapbookPage.day

 };

 }

 else {

 pages.push({

 id: scrapbookPage.id,

 title: scrapbookPage.title,

 gender: scrapbookPage.gender,

 year: scrapbookPage.year,

 month: scrapbookPage.month,

 day: scrapbookPage.day

 });

 }

 var json = JSON.stringify(pages); // #F

 this.file.writeText(json); // #F

};

exports.fileSystemService = new fileSystemService();

#A Import the file system module

#B Method to retrieve the pages from the file system

 Branstein / The NativeScript Book 203

#C Parse the JSON into objects

#D Method to save pages to the file system

#E Determine if the page already exists so we can update it

#F Convert objects to JSON and save to the file system

Listing 9.3 has a lot of code, so let’s dissect it. We are creating a reusable component (much like the

core modules in NativeScript) so that we can easily save and retrieve the scrapbook data from the file

system. The file system service exposes two functions to: getPages() and savePage().

The getPages() function reads scrapbook data from the file system and parses it into an array of

scrapbook pages. We’ll use the parsed array later to create an observable array of scrapbook pages for

the scrapbook list view to display.

The savePage() function saves a single scrapbook page to the file system, and contains rudimentary

business logic to check if the page already exists to determine if the page is updated or added (figure

9.5).

Figure 9.5 The decision process the file system service performs when a scrapbook page is saved.

Looking a little closer at the savePage() function, each scrapbook page has an id property that is

used as a unique identifier. This makes it easy to tell if a scrapbook page is new or existing.

STEP 2: ADD A UNIQUE IDENTIFIER TO A SCRAPBOOK PAGE

The file system service we just created expects a scrapbook page to have unique identifier, so we’ll have

to make sure every scrapbook page created (and updated) has an id. The scrapbookPageModel()

function on the scrapbook page is already used to create new scrapbook pages, so we just need to account

for the id property in that function. Listing 9.4 shows the changes we made.

Listing 9.4 Updating scrapbook.js so the scrapbook page model has an id property

function scrapbookPageModel(id){ // #A

 var model = new observable.Observable(); // #A

 Branstein / The NativeScript Book 204

 model.id = id; // #A

 model.genders = ["Female", "Male", "Other"];

 model.calcAge = function(year, month, day){

 var date = new Date(year, month, day);

 var now = Date.now();

 var diff = Math.abs(now - date) / 1000 / 31536000;

 return diff.toFixed(1);

 };

 return model;

}

#A Force others to supply an id to create a scrapbook page

STEP 3: REFACTOR THE SCRAPBOOK LIST PAGE TO USE THE FILE SYSTEM SERVICE

With the file system service added, let’s start using it on the scrapbook list page. At the end of chapter 8,

the list view on the scrapbook list page was bound to the pages property of an observable. Listing 9.5

shows how the data was loaded into the observable.

 Listing 9.5 Loading the list of scrapbook pages into an observable at the end of chapter 8

exports.onLoaded = function(args) {

 var page = args.object;

 var scrapbook;

 if(page.navigationContext != null) {

 scrapbook = page.navigationContext.model; //#A

 }

 else {

 scrapbook = new observable.fromObject({

 pages: new observableArray.ObservableArray(new scrapbookPageModel()) //#A

 });

 }

 page.bindingContext = scrapbook;

};

#A Scrapbook pages are loaded from the update page passing them back, or an empty array

Previously, scrapbook pages were loaded by tapping into the navigation context passed back from the

update page (when we were adding/updating a page) or by creating a new observable array. Now that

we’ve added the file system service, loading the list of scrapbook pages becomes much easier (listing

9.6).

Listing 9.6 The scrapbook.js with an updated onLoaded method to load scrapbook pages from the

file system service

var fileSystemService = require("~/data/fileSystemService");

...

...

...

exports.onLoaded = function(args) {

 var page = args.object;

 var scrapbook = new observable.fromObject({

 pages: new observableArray.ObservableArray()

 Branstein / The NativeScript Book 205

 });

 var pages = fileSystemService.fileSystemService.getPages(); // #A

 if (pages.length !== 0) {

 pages.forEach(function (item) {

 var model = new scrapbookPageModel(item.id); // #B

 model.title = item.title;

 model.gender = item.gender;

 model.year = item.year;

 model.month = item.month;

 model.day = item.day;

 scrapbook.pages.push(model);

 });

 }

 page.bindingContext = scrapbook;

};

#A Load array of pages from the file system

#B Create an observable object and set the properties of the scrapbook page

When the page loads, the updated code created an observable array to hold scrapbook pages (see the

pages property of the scrapbook object). After retrieving the saved scrapbook pages with the file system

service, we check if any pages have been saved. For each saved page, we create a new scrapbook page

model with the scrapbookPageModel() function and populate its fields. Finally, the page’s binding

context is set to the scrapbook object.

The beauty of this updated code is its simplicity: every time the page loads, it gets the data from the

file system. This approach works well, assuming the update page saves new (and updated) pages to the

file system. Let’s make sure the update page does just that next.

STEP 4: REFACTOR THE NAVIGATION CONTEXT PASSED TO THE UPDATE PAGE

Now that we have integrated the file system service to load data from the file system of the device, we

no longer need to pass the entire scrapbook around (because it is being persisted to the file system). All

we really need to pass to the update page via the navigation binding context is a single scrapbook page.

Figure 9.6 compares the navigation binding context being passed to the scrapbook update page before

and after we integrate the file system into our app.

 Branstein / The NativeScript Book 206

Figure 9.6 The before and after of the navigation binding data that is sent to the scrapbook update page when it is

navigated to.

Let’s check out the code changes we need to make to alter the navigation context being passed to the

update page (listing 9.7).

Listing 9.7 Updated navigation binding context passed to the update page in scrapbook-page.js

exports.onAddTap = function(args) {

 var page = args.object;

 var scrapbook = page.bindingContext;

 frame.topmost().navigate({

 moduleName: "views/scrapbookUpdate-page",

 context: { model: new scrapbookPageModel(scrapbook.pages.length) } // #A

 });

};

exports.onItemTap = function(args) {

 var page = args.object;

 var scrapbook = page.bindingContext;

 frame.topmost().navigate({

 moduleName: "views/scrapbookUpdate-page",

 context: { model: scrapbook.pages.getItem(args.index) } // #B

 });

};

#A Pass a new scrapbook page model to the scrapbook update page

#B Pass the scrapbook page tapped to the scrapbook update page

 Branstein / The NativeScript Book 207

To send a single scrapbook page object to the update page, we need to make changes to the add

button tap event handler (the onAddTap() function) and the list view’s item tap event handler (the

onItemTap() function). The context passed to the update page from each function was adjusted to send

a single scrapbook page object, but they were changed in different ways. For new pages (the onItemTap()

function), we create a new scrapbook page object using the scrapbookPageModel() function. For existing

pages, we lookup the item tapped and pass it directly.

TIP You may remember that we changed the scrapbookPageModel() function back in step 2 to

require a unique identifier. Generating unique numbers can be difficult, but we used a cool JavaScript

trick to generate our unique number. We used the length of the pages observable array as our unique

identifier. When there’s no items in the array, the length is 0, giving us a unique identifier of 0. When

the page assigned with 0 is added to the observable array it will also be at index 0. This also means

the next page added will have a unique id of 1 and an index of 1 in the observable array. Pretty cool!

The changes made to the scrapbook list page made the page simpler and easier to understand, but

that’s only half of the code. We also need to change the update page to account for a single object being

passed via the navigation context. Listing 9.8 shows the change to the update page’s loaded event

handler.

Listing 9.8 Update loaded event handler supporting a single scrapbook page object in

scrapbookUpdate-page.js

exports.onLoaded = function(args) {

 var page = args.object;

 var scrapbookPage = page.navigationContext.model;

 page.bindingContext = scrapbookPage;

};

STEP 5: REFACTOR THE UPDATE PAGE TO SAVE NEW (AND UPDATED) PAGES

The final step in our changes is to change the update page to save the update scrapbook page to the file

system instead of passing the updated page back to the scrapbook list page via a navigation context.

Listing 9.9 shows the updated done button tap handler code that saves the scrapbook page with the file

system service.

Listing 9.9 Updated done button tap handler in scrapbookUpdate-page.js

var fileSystemService = require("~/data/fileSystemService");

exports.onDoneTap = function(args) {

 var page = args.object;

 var scrapbookPage = page.bindingContext;

 fileSystemService.fileSystemService.savePage(scrapbookPage); // #A

 frame.topmost().navigate({ // #B

 moduleName: "views/scrapbook-page" // #B

 Branstein / The NativeScript Book 208

 }); // #B

};

#A Save the page using the file system service

#B Navigate back to the main page without passing a navigation context

And, we’re finished. If you run the Pet Scrapbook app, you will notice that your scrapbook pages persist

if you exit the app! There’s not much to show visually (because we didn’t touch the UI), but this change

makes the app much more usable.

Now that you’ve learned how to use the file system, it is time to continue adding features to the

scrapbook app and working with more hardware in NativeScript.

9.2 Camera

A foundation of modern smart phones is the ability to take, save, and share photos. But, so far, the Pet

Scrapbook hasn’t used this feature. In fact, we’d argue the Pet Scrapbook isn’t much of a scrapbook

because there aren’t any photos! Let’s change that by allowing users to use a device’s camera to take

photos (or select an existing photo from their photo album) and add them directly to a scrapbook page.

Before we get started, you’ll need to add the nativescript-camera npm package to your app.

Open a command line, navigate to your app’s root folder, and run the following command:

npm install nativescript-camera --save

THE NATIVESCRIPT MARKETPLACE

NativeScript originally shipped with a core module named camera, which provided the same capabilities

as the nativescript-camera module. In October 2016, the camera core module was deprecated and

moved to its own npm package. The move made sense, because it allowed for a faster development

cycle of the package without having to wait for the core of NativeScript to be updated.

Fast forward to today and there is an entire marketplace built for developers to find NativeScript plugins

(https://market.nativescript.org). The camera module is one of these such plugins. So what is the

marketplace then?

 Branstein / The NativeScript Book 209

As you can see above, the marketplace is a centralized location for you to find NativeScript plugins,

templates (which you can use with the tns create -–template command), and code samples if you need

help or additional ideas while working on your project.

Although all plugins are npm packages, the marketplace takes it a step further. The marketplace aims

to make finding plugins for developers easier and more reliable. Besides searching for plugins, the

NativeScript marketplace shows vital information about plugins and templates such as the supported

platforms, minimum NativeScript version, is the current version of NativeScript supported, and are their

demos among other items.

 Branstein / The NativeScript Book 210

The NativeScript marketplace also lists if a plugin is verified or not. Verified plugins are plugins that

meet a certain minimal amount of criteria. Having verified plugins help developers understand which

plugins are higher quality, verified to work, and reliable. You can read more about verified plugin criteria

here: https://github.com/NativeScript/marketplace-feedback/blob/master/docs/verified-plugins.md

WARNING NativeScript originally shipped with a core module named camera, which provided the same

capabilities as the nativescript-camera module. In October 2016, the camera core module was

deprecated and moved to its own npm package. The move made sense, because it allowed for a faster

development cycle of the package without having to wait for the core of NativeScript to be updated. As

of January 2017, the camera core module still exists as part of NativeScript. We expect it will be

removed from the core modules soon, so you shouldn’t use it.

9.2.1 Taking photos

Taking photos on a mobile device is so ubiquitous that it requires no introduction, but how mobile devices

take photos (and the options available while taking photos) varies widely across platforms and devices.

Because of these differences, the nativescript-camera package approaches photos and the use of

the camera in a minimalistic way: when you want to take a picture, call the takePicture() function. In

turn, when the function is called, simply open the native device’s camera UI and let the native device

handle the rest. That’s about as easy as it gets, so let’s get started.

To integrate the camera and photos into the Pet Scrapbook app, we’ll start by adding a button to the

update page. When a user taps the button, we’ll call the takePicture() function from the

nativescript-camera module. After this step, we’ll add the photo to the scrapbook page model and

show it on the page. Let’s start with the UI and add a button and image element to the update page

(listing 9.10).

Listing 9.10 The scrapbookUpdate-page.xml with a camera button and image added

<Page loaded="onLoaded">

 <StackLayout>

 <Label text="{{ title, title + ' Scrapbook Page' }}" />

 <TextField class="header" text="{{ title }}" hint="Enter title..."/>

 <Label text="{{ 'Age: ' + calcAge(year, month, day) + ' years old'}} " />

 <DatePicker year="{{ year }}" month="{{ month }}" day="{{ day }}" />

 <Label text="Gender: " />

 <ListPicker items="{{ genders }}" selectedIndex="{{ gender }}" />

 <Image src="{{ image }}" stretch="none" /> // #A

 <Button tap="onAddImageTap" text="Add Image" /> // #B

 <Button tap="onDoneTap" text="Done"/>

 </StackLayout>

</Page>

#A The image’s source is data-bound to the image property of the scrapbook page

#B Tapping the Add Image button will open the native camera UI to take or select a photo

 Branstein / The NativeScript Book 211

The XML for the update page doesn’t require much work because all we added was the image element

and a button to open the native camera UI. One item to note is that the source property of the image

element is data-bound to the image property of the scrapbook page’s binding context. We haven’t

explicitly added this property to our scrapbook model yet, but don’t worry: we will take care of that in

just a bit.

NOTE Remember that the image element defaults to stretch the image to fill the screen. For now, we’ll

set the image to not stretch to maintain the aspect ratio, but in the next chapter, we’ll revisit styling

and make the page look more professional.

When the user taps the Add Image button, we want to launch the native camera UI, allow them to

take or select a picture. Listing 9.11 shows the code added to handle the button’s tap event handler.

Listing 9.11 Add image button tap event handler added to scrapbookUpdate-page.js

var camera = require("nativescript-camera"); // #A

var image = require("image-source"); // #A

exports.onAddImageTap = function (args) {

 var page = args.object;

 var scrapbookPage = page.bindingContext;

 camera.requestPermissions(); // #B

 camera

 .takePicture() // #C

 .then(function (picture) { // #D

 image.fromAsset(picture).then(function (imageSource) { // #E

 scrapbookPage.set("image", imageSource); // #E

 });

 });

}

#A Importing the nativescript-camera module and image-source module is the same as any core module

#B To use the camera you need to request permission

#C takePicture() returns a promise

#D When the promise resolves, the then() function is called, passing the picture

#E Create an image source object to bind to the view

As we’ve mentioned, using the camera module is straightforward, but there are a few items we want

to point out. Before taking a picture with the camera, you’ll need to ask the mobile device if it’s okay to

use the camera by calling the requestPermissions() function. When this method is called, the mobile

device will prompt the user to grant access to use the camera. Figure 9.7 shows the different messages

on Android and iOS.

 Branstein / The NativeScript Book 212

Figure 9.7 Android (left) and iOS (right) requesting permission to access the camera and photos.

TIP You must request permission to access the camera only once, but it’s a good practice to request

permission before taking a picture, even if you believe you’ve asked already. Multiple calls to the

requestPermissions() function are ignored once you’ve been granted access to use the camera.

After requesting permission to the camera, you can take a picture with the takePicture() function.

When called, the function returns a JavaScript promise after opening the native device’s camera UI. The

promise will get resolved when the native camera UI returns a photo that was taken or selected from the

device’s photo gallery. The resolved promise contains a reference to the picture. Conveniently, the

returned picture is exactly what the image element needs to data-bind to, so we can add it directly to the

scrapbook page model and the data-binding will take care of the rest.

DEFINITION A promise is a JavaScript way of doing asynchronous code execution. We’re not going to

cover how promises work, but you can learn more about promises at

https://developers.google.com/web/fundamentals/getting-started/primers/promises.

Let’s look at the scrapbook after making these changes. Figure 9.9 shows Android and iOS camera UIs

shown after tapping the Add Image button.

 Branstein / The NativeScript Book 213

Figure 9.9 The launching of the camera in Android (middle) and iOS (right) when the add image button is tapped.

Differences with the camera in Android and iOS

The Android emulator simulates a camera, but the iOS simulator does not. If you are running your app

using the iOS simulator, you will be able to choose only an image that is in the photo library of the

device; the resulting image object that is returned by the camera module is the same whether an image

is chosen from the library or taken by the camera.

In iOS, the first time you launch the camera from a new app, the user will be prompted with a security

dialog as shown in the following figure.

The security dialog that a user is prompted with in iOS when an app tries to access the camera the first time.

The description text of the security dialog can be customized for iOS by updating the

NSPhotoLibraryUsageDescription key/value pair inside of the Info.plist file.:

 Branstein / The NativeScript Book 214

<key>NSPhotoLibraryUsageDescription</key>

<string>This app would like to access the camera to take a picture of

your pet.</string>

The info.plist file is an information property list file. This file is used by iOS apps to provide metadata

to iOS. iOS understands the structure of the info.plist file (a system key/value pair collection) and is

able to access the file at runtime. The info.plist file is located within the platform-specific folder files

discussed in chapter three at app/App_Resources/iOS/Info.plist. For more information about the

info.plist file, you can review official apple documentation at

https://developer.apple.com/library/content/documentation/General/Reference/InfoPlistKeyReference

/Introduction/Introduction.html

After a user selects an image or takes a picture with the camera, the camera module automatically

returns the user to the page that they were on, as seen in figure 9.10.

Figure 9.10 The scrapbook page after taking a picture.

 Branstein / The NativeScript Book 215

You may have noticed that the image you selected or captured is rather large. Most device cameras

have a very high megapixel count, which could result in taking images that consume a lot of space on a

device and are physically large as well. Luckily, the camera module allows you to adjust the size of the

picture by passing in a parameter to the takePicture() function (listing 9.12).

Listing 9.12 Passing parameters to the takePicture() function on the update page to control the

image size

exports.onAddImageTap = function (args) {

 var page = args.object;

 var scrapbookPage = page.bindingContext;

 camera.requestPermissions();

 camera

 .takePicture({

 width: 100, // #A

 height: 100, // #A

 keepAspectRatio: true}) // #B

 .then(function (picture) {

image.fromAsset(picture).then(function (imageSource) {

 scrapbookPage.set("image", imageSource);

 });

 });

}

#A Set the height and width of the image we take with the camera

#B Tell the camera module to maintain the aspect ratio of the picture taken

The takePicture() function takes an optional JSON object as a parameter that accepts four optional

properties: width, height, keepAspectRatio, and saveToGallery. Table 9.1 summarizes how each of these

properties can be used.

Table 9.1 Optional properties and parameter values for the takePicture() function

Name Description

width The maximum (or desired) width of the picture (in device independent pixels).

height The maximum (or desired) height of the picture (in device independent pixels).

keepAspectRatio A true/false value indicating whether the image’s original aspect ratio (or dimensions) should

be enforced.

saveToGallery A true/false value indicating if the photo should be saved to the mobile devices photo

gallery. This is the “Photos” area on Android and the “Camera Roll” on iOS.

After making these changes, the picture taken appears smaller on our device (figure 9.11).

 Branstein / The NativeScript Book 216

Figure 9.11 The scrapbook update page showing an image that has been taken at a lower resolution using the camera

module.

WIDTH, HEIGHT, AND KEEP ASPECT RATIO EXPLAINED

You may have noticed that the picture taken in figure 9.11 isn’t 100 x 100 pixels, even though we

specified a width and height of 100 pixels. This is because we requested the app maintain the aspect ratio

of the picture.

DEFINITION The aspect ratio of a picture is the relationship between the picture’s width and height,

expressed in the format #:#, read “# by #.” For example, and image with a width of 300 pixels and

height of 400 pixels is referred to as having an aspect ratio of 3:4, or read “three by four.” Further, a

100 x 100 pixel image has an aspect ratio of 1:1.

By telling the app to retain an image’s aspect ratio, the nativescript-camera package automatically

readjusts the height and width of the picture, so the image’s aspect ratio is maintained, but is resized to

the desired width or height. In figure 9.11, the image’s aspect ratio is 3:2, so the image is resized to be

100 x 67 pixels.

9.2.2 Saving the image to the file system

Now that we have integrated the camera into the Pet Scrapbook, we’ll need to provide a way for saving

our scrapbook images to the file system. This means, we’ll make a few changes to the file system service

we created earlier in this chapter. But, before we start writing code, we need to decide on how we’ll save

the binary image data to a text file.

WARNING Hold on! Binary data? If you’ve never worked with images before, then you may not know

that images are stored as binary data, not text data. This means you must store, read, and write the

 Branstein / The NativeScript Book 217

image data as binary data or convert the binary image data to text data before writing it to the file

system.

Earlier in this chapter, we mentioned that we’d be storing our scrapbook data in a text file, formatted

as a JSON string. We also used the readText() and writeText() functions of the file system module,

which read and write text-formatted data. This poses a problem because our image data is binary-

formatted. There’s a few ways we could tackle this problem, including converting the binary data to text

data and saving each image as its own binary file on the file system. To keep things simple, let’s convert

the binary image data to text data using base64 encoding.

DEFINITION Base64 encoding is a common binary to string encoding scheme that will take a binary

file and represent it as an ASCII string.

TIP Even though we’ve decided to keep things simple by using base64 encoding, converting images to

base64-encoding can increase the image’s size by up to 1.33x. As we add more and more images to

the pet scrapbook, the size of the file we’re using to store all the scrapbook data could get rather large.

If we were planning to have hundreds of scrapbook pages, we may want to reconsider storing all the

images as base64-encoded strings in a single file. Instead, we may store each image individually as a

binary file and store the name of that file as text data in the main data file. With this approach, we

could load individual image files, as needed, instead of everything all at once.

Let’s revisit the file system service from earlier in the chapter and add support for reading and saving

images as base64-encoded strings. We’ll do this by adding an additional property named imageBase64 to

our JSON file. Before writing the JSON file, we’ll convert the binary image to a base64-encoded string and

place the value in the imageBase64 property. When the JSON file is read from the file system, we’ll reverse

the process, converting the base64-encoded string to a binary image. Figure 9.13 summarizes this

process.

 Branstein / The NativeScript Book 218

Figure 9.13 The file system service will convert binary image data to a base64-encoded string when saving to the file

system. The process is reversed when data is read from the file system.

Luckily for us, NativeScript’s image module already has implementations for converting images to and

from base64 encoded strings. Listing 9.13 shows the updates to the file system service to support saving

images to the file system.

Listing 9.13 The data\fileSystemService.js file updated to save and load images

var fileSystem = require("file-system");

var imageModule = require("image-source"); // #A

var fileSystemService = function () {

 this.file = fileSystem.knownFolders.documents().getFile("scrapbook.json");

};

fileSystemService.prototype.getPages = function () {

 var pages = [];

 if (this.file.readTextSync().length !== 0) {

 pages = JSON.parse(this.file.readTextSync());

 }

 pages.forEach(function (page) {

 if (page.imageBase64 != null) {

 page.image = imageModule.fromBase64(page.imageBase64); // #B

 }

 });

 return pages;

};

fileSystemService.prototype.savePage = function (scrapbookPage) {

 Branstein / The NativeScript Book 219

 var pages = this.getPages();

 var index = pages.findIndex(function (element) {

 return element.id === scrapbookPage.id;

 });

 if (index !== -1) {

 pages[index] = {

 id: scrapbookPage.id,

 title: scrapbookPage.title,

 gender: scrapbookPage.gender,

 year: scrapbookPage.year,

 month: scrapbookPage.month,

 day: scrapbookPage.day,

 imageBase64: scrapbookPage.image != null ?

 scrapbookPage.image.toBase64String("png") : null // #C

 };

 }

 else {

 pages.push({

 id: scrapbookPage.id,

 title: scrapbookPage.title,

 gender: scrapbookPage.gender,

 year: scrapbookPage.year,

 month: scrapbookPage.month,

 day: scrapbookPage.day,

 imageBase64: scrapbookPage.image != null ?

 scrapbookPage.image.toBase64String("png") : null // #C

 });

 }

 var json = JSON.stringify(pages);

 this.file.writeText(json);

};

exports.fileSystemService = new fileSystemService();

#A The image module has a base64 encoder/decoder

#B Convert each image string loaded to an image object

#C Convert the image into a base64 string to store with the scrapbook page

When we updated the file system service, we created a new property on the scrapbook page named

imageBase64. As seen in figure 9.14, the imageBase64 property is used only by the file system service.

We also created the image property, which is used to bind to image elements on the two scrapbook pages.

 Branstein / The NativeScript Book 220

Figured 9.14 The image and imageBase64 properties are used by the Pet Scrapbook app in different ways. The image

object is used for data-binding, and the imageBase64 string is used to save the image to the file system.

9.2.3 Displaying the image

Now that we can store and retrieve the image object from the file system, the main scrapbook page, let’s

update the main scrapbook page to show a thumbnail image of our pet. Listing 9.14 and 9.15 show how

to add an image property to the page’s binding context and bind it to an image element in the list view.

Listing 9.14 The scrapbook-page.js onLoaded() function updated to load the image into the

scrapbook model

exports.onLoaded = function(args) {

 var page = args.object;

 var scrapbook = new observable.fromObject({

 pages: new observableArray.ObservableArray() });

 var pages = fileSystemService.fileSystemService.getPages();

 if (pages.length !== 0) {

 pages.forEach(function (item) {

 var model = new scrapbookPageModel();

 model.id = item.id;

 model.title = item.title;

 model.gender = item.gender;

 model.year = item.year;

 model.month = item.month;

 model.day = item.day;

 model.image = item.image; // #A

 Branstein / The NativeScript Book 221

 scrapbook.pages.push(model);

 });

 }

 else {

 scrapbook = new observable.fromObject({

 pages: new observableArray.ObservableArray()

 });

 }

 page.bindingContext = scrapbook;

};

#A Set the image property of the scrapbook model loaded from the file system

Listing 9.15 The scrapbook-page.xml binding to the scrapbook image

<Page loaded="onLoaded">

 <Page.actionBar>

 <ActionBar title="Pet Scrapbook">

 <ActionItem tap="onAddTap" ios.position="right"

 text="Add" android.position="actionBar"/>

 </ActionBar>

 </Page.actionBar>

 <StackLayout>

 <ListView items="{{ pages }}" itemTap="onItemTap">

 <ListView.itemTemplate>

 <StackLayout orientation="horizontal"> // #A

 <Image src="{{ image }}"/> // #B

 <Label text="{{ title, title + ' Scrapbook Page' }}" />

 </StackLayout>

 </ListView.itemTemplate>

 </ListView>

 </StackLayout>

</Page>

#A Create a horizontal layout for thumbnails

#B Bind the image to a UI image

By wrapping the label with a horizontal stack layout and adding an image, we created the look and

feel of a thumbnail in the list view item template. Figure 9.15 shows the result, with the image and label

displayed side-by-side.

 Branstein / The NativeScript Book 222

Figure 9.15 The scrapbook page updated to show the pet image like a thumbnail.

9.3 Using GPS and location services

The global positioning system (GPS) is another mobile device feature you’ll use throughout the apps you

create. GPS is often used in conjunction with other services, like maps to display your location, social

sharing to tell others where you’re visiting, and photos to identify where a photo was taken. We’ll be

integrating GPS into the Pet Scrapbook so we can capture the location where scrapbook images are taken.

Although people usually refer to finding their location as “using GPS,” modern mobile devices use more

than GPS to determine your location. Because of this distinction, you’ll likely see location-related

functionality of a mobile device referred to as “using location services.”

DEFINITION Location services is group of mobile device capabilities that identifies a user’s location.

Most mobile devices combine both GPS and WiFi signals to help determine your location to a high

degree of accuracy.

Figure 9.16 shows how these two systems work together to produce location data that can be used in

apps.

Figure 9.16 Location services combine GPS and WiFi to create location data.

Now that you know how mobile devices obtain your location with location services, let’s add it to the

Pet Scrapbook. We’ll be using the nativescript-geolocation npm packages to access location services. You’ll

recall from earlier in this chapter that you can add npm packages to your app via the command line: npm

install <npm package name> --save. This holds true for the nativescript-geolocation package, but

there’s a second way to add packages to your app by using the NativeScript plugin system.

9.3.1 Plugins

NativeScript plugins are a fancy way of saying, an npm package specifically written for NativeScript apps.

You’ve already seen (and used) a variety of plugins, but probably didn’t realize it. For example, the

NativeScript core modules and the nativescript-camera package are both plugins. In fact, there are over

 Branstein / The NativeScript Book 223

400 plugins for NativeScript, ranging from custom UI controls, to hardware devices like the accelerometer,

and even barcode scanners. Now, that’s cool!

TIP The official NativeScript plugin site is http://plugins.nativescript.org. From there, you can browse

through hundreds of plugins.

If the core modules and the camera package we added earlier in this chapter are plugins, you might

be wondering if all npm packages are plugins? Not exactly. There are a few differentiating points for a

regular npm package to be considered a NativeScript plugin, but truthfully, you don’t need to know about

these unless you’re planning to write your own plugin. Writing your own plugins is a cool and interesting

topic, but we’re not going to cover it in this book.

NOTE You can find more information on plugins at https://docs.nativescript.org/plugins/plugins

regarding the npm package structure. Most NativeScript plugins are named issuing the nativescript-

pluginname convention and can be found by searching for NativeScript on https://npmjs.org.

9.3.2 Using the geolocation plugin

As we mentioned earlier, you can add any npm package to your app using the npm CLI, but NativeScript

has a dedicated CLI option to do the same thing. Let’s use the NativeScript CLI to add the geolocation

plugin. Navigate to the root folder of the Pet Scrapbook and run the following CLI command:

tns plugin add nativescript-geolocation

After running the command, the nativescript-geolocation plugin is added to the app. If you look in the

node_modules folder, you should a new folder (figure 9.18).

Figure 9.18 Adding the nativescript-geolocation plugin to the Pet Scrapbook adds a folder to the node_modules folder.

 Branstein / The NativeScript Book 224

NOTE Don’t forget that all plugins are npm packages, and that’s why the geolocation plugin is added

to the node_modules folder.

TIP You can also install plugins by using npm directly. For example, running tns plugin add

nativescript-geolocation is the same as running npm install nativescript-

geolocation --save.

Now that we’ve added the geolocation plugin, we can use it the same way we use any other

NativeScript core module. Before we jump into the code, let’s plan how we’ll incorporate location services

into the app. Figure 9.19 shows how we’ll be modifying the app’s behavior when the Add Image button is

pressed.

NOTE Remember when we added the camera to the Pet Scrapbook and the user was prompted to allow

the app to access the camera? Accessing location data from within an app requires us to prompt the

user in a similar way. This isn’t hard to do because it’s done automatically, but we feel it’s important to

point out.

Figure 9.19 The workflow when the add image button is tapped.

With the updated workflow in mind, update the Add Image button tap event handler to incorporate a

request to use location services and a call to get the current location (listing 9.16).

Listing 9.16 The scrapbookUpdate-page.js updated to get location data

var geolocation = require("nativescript-geolocation"); // #A

exports.onAddImageTap = function (args) {

 var page = args.object;

 var scrapbookPage = page.bindingContext;

 Branstein / The NativeScript Book 225

 geolocation.isEnabled().then(function (enabled) { // #B

 if (!enabled) { // #B

 geolocation.enableLocationRequest(); // #B

 }

 });

 camera.requestPermissions();

 camera

 .takePicture({ width: 100, height: 100, keepAspectRatio: true })

 .then(function (picture) {

 image.fromAsset(picture).then(function (imageSource) {

 scrapbookPage.set("image", imageSource);

 });

 geolocation.getCurrentLocation().then(function (location) { // #C

 scrapbookPage.set("lat", location.latitude); // #D

 scrapbookPage.set("long", location.longitude); // #D

 });

 });

};

#A Add the geolocation package reference to the top

#B You should check to see if location services is enabled before using it, and request that it be enabled

#C Getting the location data automatically prompts the user for permission

#D The returned location has latitude and longitude values

Before using the geolocation package to access location services on a mobile device, you should check

to see if it’s enabled. Most modern mobile devices disable location services by default because it can cause

the device’s battery to drain quickly. Listing 9.16 shows how the isEnabled() function of the geolocation

plugin is used to check if location services is enable for the app. If it’s not enabled, the

enableLocationRequest() function is used to request the user enable location services.

NOTE The isEnabled() and enableLocationRequest() functions of the geolocation module

are nice API abstractions, wrapping the native implementation of the necessary native API calls needed

to ensure location services is enabled. Using these functions makes it simple to ensure you have access

to location services. If the user doesn’t enable location services, requests for location data will return

nothing.

Once we’ve verified we have access to location services, the getCurrentLocation() function

queries the mobile device’s location services, returning your location. You’ll notice that a JavaScript

promise is actually returned, so you’ll have to use the then() function syntax to retrieve the latitude and

longitude.

Finally, let’s add a label to the update page so we can see the location where the picture was taken

(listing 9.17).

Listing 9.17 The scrapbookUpdate-page.xml showing the new location properties data bound

<Page loaded="onLoaded">

 <StackLayout>

 <Label text="{{ title, title + ' Scrapbook Page' }}" />

 <TextField class="header" text="{{ title }}" hint="Enter title..."/>

 <Label text="{{ 'Age: ' + calcAge(year, month, day) + ' years old'}} " />

 Branstein / The NativeScript Book 226

 <DatePicker year="{{ year }}" month="{{ month }}" day="{{ day }}" />

 <Label text="Gender: " />

 <ListPicker items="{{ genders }}" selectedIndex="{{ gender }}" />

 <Image src="{{ image }}" stretch="none" />

 <Label text="{{ (lat, long), 'Picture taken at ' + lat + ', ' + long }}" />

// #A

 <Button tap="onAddImageTap" text="Add Image" />

 <Button tap="onDoneTap" text="Done"/>

 </StackLayout>

</Page>

#A Bind the latitude and longitude to the update page

Let’s run the Pet Scrapbook and see our changes in action. Figure 9.20 shows the message displayed

when the Add Image button is tapped.

Figure 9.20 The security prompt that happens the first time that location data is accessed.

NOTE The security prompt to allow location access will occur only the first time that the app is launched.

This behavior is managed by the Android and iOS operating system.

After allowing the Pet Scrapbook to access location data on the device and then taking a picture, you’ll

see that the UI is now updated with the latitude and longitude, as show in figure 9.21. You may have also

noticed in listing 9.14 we expanded upon the data binding expressions that we learned in the last chapter

by creating an expression that has two parameters (lat and long). To use multiple parameters in a

binding expression, you need to use parenthesis to group them before delimiting them with a comma

from the expression.

 Branstein / The NativeScript Book 227

Figure 9.21 The scrapbook update page showing the data binding of location information.

PLAY Phew! That was a long chapter with a ton of code. If you want to follow along in the Playground,

check out the final version at https://play.nativescript.org/?template=play-js&id=r547M9&v=21.

9.4 Summary

In this chapter, you learned to do the following:

▪ Interact with device hardware

▪ Store and retrieve files on the file system

▪ Use the camera and GPS of a device

▪ Install and use a NativeScript plugin

9.5 Exercise

3. Add a timestamp to the scrapbook page when it is saved

3. Change the aspect ratio when taking a picture with the camera to force a 4x3 ratio

9.6 Solutions

4. Update the savePage method of the data\fileSystemService.js file

fileSystemService.prototype.savePage = function (scrapbookPage) {

 var pages = this.getPages();

 var index = pages.findIndex(function (element) {

 return element.id === scrapbookPage.id;

 });

 if (index !== -1) {

 pages[index] = {

 id: scrapbookPage.id,

 Branstein / The NativeScript Book 228

 title: scrapbookPage.title,

 gender: scrapbookPage.gender,

 year: scrapbookPage.year,

 month: scrapbookPage.month,

 day: scrapbookPage.day,

 imageBase64: scrapbookPage.image != null ?

scrapbookPage.image.toBase64String("png") : null,

 timestamp: new Date().toString()

 };

 }

 else {

 pages.push({

 id: scrapbookPage.id,

 title: scrapbookPage.title,

 gender: scrapbookPage.gender,

 year: scrapbookPage.year,

 month: scrapbookPage.month,

 day: scrapbookPage.day,

 imageBase64: scrapbookPage.image != null ?

scrapbookPage.image.toBase64String("png") : null,

 timestamp: new Date().toString()

 });

 }

 var json = JSON.stringify(pages);

 this.file.writeText(json);

};

2. Update the camera.takePicture() function call to the following:

 camera.takePicture({ width: 400, height: 300, keepAspectRatio: false })

 Branstein / The NativeScript Book 229

10
Creating professional UIs with themes

This chapter covers

▪ Styling your apps with NativeScript themes instead of custom CSS

▪ Creating consistent-looking data entry forms to improve user experience

Over the last several chapters you’ve learned about data binding and interacting with mobile device

hardware by creating the Pet Scrapbook app. The Pet Scrapbook app is functional, but it doesn’t feel like

a well-designed app: it’s a little clunky. We’ve neglected the app’s visual design, the detail page is just

hard to use, and the app is built for only phone-sized devices. It’s time to fix these issues and make the

app feel polished.

Over the next two chapters, you’ll be learning how to turn functioning apps into more polished apps

by using more advanced UI design techniques. What constitutes a more polished app is somewhat

subjective, but there are solid UI design patterns that you can use to improve an app. In this chapter,

we’ll start a journey of refactoring and refinement of the Pet Scrapbook app by using NativeScript themes

to style the UI. Let’s get to it!

10.1 Themes

We may be stretching a bit, but bear with us, because we’re taking a trip down nostalgia lane. If you’ve

done a fair bit of web development, you might remember the good ‘ole days—hand-coding UIs with CSS,

margins, paddings, floats, clearing floats. It was glorious. Or not. Then there was Bootstrap. Structure

your HTML markup in a certain way, add a few classes, and your apps started to look good (at least for

us non-designers). Sure, everyone’s website started to look the same, but heck, we’ll take cookie-cutter

styling over the horror of floats any day.

Ok, enough reminiscing. In all seriousness, designing great UIs is hard, even if you’re a designer. And,

we’re not designers, so we like to use tools that make it easy to create good looking apps. That’s where

themes come in.

 Branstein / The NativeScript Book 230

DEFINITION Themes are a collection of pre-built CSS style rules you can use to quickly style your apps.

Think of themes as Bootstrap for NativeScript apps.

By following a few XML markup conventions and applying a CSS style, your apps can come to life. But

let’s be clear: just because you’re using themes doesn’t mean that you’ll never write CSS for your app

again. You’ll still need CSS, but just not nearly as much.

10.1.1 Incorporating themes into your app

The first stop on our refactoring journey is to re-style our app with themes. We’ll be updating each page

by removing some of our custom CSS, and adding pre-defined CSS classes provided by NativeScript

themes. We think the best way to learn something new is through practice, so let’s get started.

As we’ve said earlier, themes are a collection of pre-built CSS class selectors. The theme collection is

maintained as an npm package named nativescript-theme-core, and it’s automatically included in your

app if you created your app using NativeScript version 2.4.0 or above.

TIP If you don’t know what version of NativeScript you used to scaffold your app initially, it’s ok. Check

the package.json file in the root of your app. If the nativescript-theme-core package is installed, you’ll

see it listed in the dependencies section. For example: "nativescript-theme-core":

"^1.0.2".

If you don’t have the nativescript-theme-core package installed, you can install it be from the

command line using npm:

npm install nativescript-theme-core --save

Figure 10.1 shows what you should see after adding the theme package to the app.

Figure 10.1 Console output after adding the nativescript-theme-core package to the Pet Scrapbook.

During the installation process, npm adds nativescript-theme-core to the node_modules folder, as

seen in figure 10.2.

 Branstein / The NativeScript Book 231

Figure 10.2 The Pet Scrapbook node_modules folder showing the added themes package.

Several color schemes are included in nativescript-theme-core – two core schemes: light and dark,

and eleven other colors (blue, grey, orange, purple, and so on). All the color schemes provide the same

capabilities, but colorize UI elements differently. Figure 10.3 shows the light (top) and dark (bottom) color

schemes for Android (left) and iOS (right).

Fig 10.3 Light (top) and dark (bottom) color schemes applied to an app on Android (left) and iOS (right).

 Branstein / The NativeScript Book 232

To use a color scheme, import the CSS file into your app at the top of the app.css file. To import the

light theme, add this reference:

@import 'nativescript-theme-core/css/core.light.css';

TIP Switching color schemes is easy. If you’d like to see use the dark color scheme, remove the

core.light.css import statement at the top of the app.css file and add @import 'nativescript-

theme-core/css/core.dark.css';. Explore the css folder of the nativescript-theme-core npm

package for other color schemes (blue, for example). To switch to the alternate color, import the color:

@import 'nativescript-theme-core/css/blue.css';.

We’re going to use the light color scheme in the Pet Scrapbook. Be sure to import it into the app.css

file by adding the import statement at the top:

@import 'nativescript-theme-core/css/core.light.css';

10.2 Using text classes, alignment, and padding

We’ll start using themes on the home page of the Pet Scrapbook. At the end of chapter 9, the home page

had several custom CSS classes for the page header, footer, and labels (listing 10.1).

Listing 10.1 Custom CSS classes in home-page.css at the end of Chapter 9

.header {

 font-size: 32px;

}

label {

 text-align: center;

 margin-top: 10px;

 margin-bottom: 10px;

}

.footer {

 font-size: 10px;

}

The home-page.xml page then used the classes to make the page header label large (32px), the footer

label small (10px), center both labels, and provide a 10px margin on the top and bottom (listing 10.2).

Listing 10.2 An excerpt from home-page.xml at the end of Chapter 9

<StackLayout>

 <Label class="header" text="{{title}}" />

 <Image src="~/images/home.png"></Image>

 <Label class="footer" text="{{footer}}" />

 <StackLayout orientation="horizontal" horizontalAlignment="center" >

 <Button style="margin-right: 20px;" text="About" />

 <Button style="margin-left: 20px;" text="Continue"

 tap="onContinueTap" />

 </StackLayout>

</StackLayout>

Before we go any further, delete the custom styles from the home-page.css file. We’ll be using built-

in styles from the theme package from here on.

 Branstein / The NativeScript Book 233

WARNING If you don’t delete the existing styles, you won’t run into any errors, but your app may look

different from ours.

10.2.1 Affecting text size

Let’s start replacing the CSS by addressing the header font size. Labels used as headings can be replaced

with h1, h2, ..., and h6 CSS classes, like <h1>, <h2>, ..., and <h6> tags in HTML.

TIP Use h1, h2, h3, h4, h5, and h6 CSS classes to style labels intended to be page headings.

The header label is intended to be the primary heading on the page, so let’s change its class to an h1:

<Label class="h1" ... />.

Another common need is to create a picture caption or footnote, typically with a font size that is slightly

smaller and less pronounced than normal page text.

TIP Use the footnote CSS class to style labels used as an image caption or footnote.

Our existing footer class is a great candidate for replacement with the built-in footnote class, so change

the label to: <Label class="footnote" ... />.

10.2.2 Aligning text

Even though it doesn’t take much effort to create a CSS rule to center-align labels by using text-align:

center, we can use the built-in CSS class text-center to accomplish the same thing. So, let’s update the

two labels by adding the text-center class:

<Label class="h1 text-center" text="{{ title }}" />

<Label class="footnote text-center" text="{{ footer }}" />

TIP Use the built-in CSS classes text-center, text-left, and text-right to align labels in your app.

Last, we can clean up our use of margin and padding CSS rules using the built-in class. The built-in

padding and margin classes use a convention-based approach of: {margin/padding}-

{top/bottom/left/right}-{amount}, where the various keywords (like margin, top, and left) are

abbreviated by using the first letter only. So, a CSS class of m-t-25 adds a 25px margin top the top of an

element. Likewise, p-b-5 adds a 5px padding to the bottom of an element.

Let’s replace our existing use of the top, bottom, left, and right margin rules with the new convention-

based classes we just learned about. The first candidates are the About and Continue buttons with inline

style rules:

<Button class="m-r-20" text="About" />

<Button class="m-l-20" text="Continue" tap="onContinueTap" />

 Branstein / The NativeScript Book 234

By using the m-r-20 and m-l-20 classes, the a 20px margin was added to the right of the About button,

and a 20px margin was added to the left of the Continue button.

To replace the style rules giving a 10px margin to the top and bottom of labels, we could use the built-

in classes m-t-10 and m-b-10, but there’s a shortcut.

TIP When you want to apply the same margin or padding to an element on the same axis (top/bottom

is considered the y-axis, left/right is the x-axis), you can use a single class. Substitute x or y for the

directional component of the class. For example, m-t-10 and m-b-10 can be combined into m-y-10.

Using this new convention, we can quickly apply a margin of 10px to the top and bottom of the labels

by adding the class m-y-10:

<Label class="h1 text-center m-y-10" text="{{ title }}" />

<Label class="footnote text-center m-y-10" text="{{ footer }}" />

10.3 Styling buttons

The last change we’ll make to the home page is to our About and Continue buttons. One of the great

things about NativeScript is that placing a button on the UI creates a native Android and iOS button -

which includes the default styling of the native button. So, you may ask, why would I want to style my

button differently?

In many cases, you may not want to. The native look and feel is exactly what you want. After all,

Android apps should look and feel like Android apps, and iOS apps should look and feel like iOS apps. At

the same time, we’ve talked to a lot of developers and we’ve heard the following three things:

4. Providing a unified look and feel to all their apps is important.

5. The default iOS button doesn’t look like a button (it looks like a link) and often confuses

developers new to iOS development.

6. App users frequently complain about button sizes being too little, and when they tap the button,

they often miss the hit box of the button, causing them to tap the button multiple times to get it

to work.

DEFINITION A button or link’s hit box is the screen area around the button that detects whether a user

has tapped the button. Smaller buttons (which inherently have smaller hit boxes) are more difficult to

tap. Creating larger buttons is one way to increase the likelihood that users will tap the button on their

first try.

By using the button classes of the built-in themes, you can address the three points above. Let’s start

by adding the base CSS class, btn, to our buttons:

<Button class="btn m-r-20" text="About" />

<Button class="btn m-l-20" text="Continue" ... />

This base class applies the default styles of a button, including size and spacing between with elements.

 Branstein / The NativeScript Book 235

TIP Although it’s not requirement, we recommend you start with this class when styling buttons.

The next choice you have is whether the button is a solid color or transparent. The btn-primary class

styles a button with the theme’s primary color, and btn-outline applies a transparent background with a

thin outlined border. We like the look of colored buttons, so let’s add the btn-primary class to our buttons:

<Button class="btn btn-primary m-r-20" text="About" />

<Button class="btn btn-primary m-l-20" text="Continue" ... />

WARNING Don’t apply both the btn-primary and the btn-outline classes to the same button. Choose

one.

The next button styling option you can choose from is whether to round the corners of your button. If

you’re going for a smoother design, you might like rounded edges, but if your app’s design has more hard

edges and angles, square corners might be better.

The default button style is square corners. To add rounded corners, use the btn-rounded-sm or btn-

rounded-lg classes, which add small (sm) or large (lg) rounded corners to a button. We like the look of

small rounded corners, so we’ve added these to our buttons:

<Button class="btn ... btn-rounded-sm" text="About" />

<Button class="btn ... btn-rounded-sm" text="Continue" ... />

Last, you can add a special effect to buttons that makes them appear highlighted to when they’re

tapped by adding the btn-active class. We like the subtle effect, so we’ve added it to the buttons:

<Button class="btn ... btn-active" text="About" />

<Button class="btn ... btn-active" text="Continue" ... />

10.3.1 Cleaning up

We’ve made a lot of changes to the home page, and learned how to style text and buttons. Before we

check out the changes, delete the home-page.css file; we don’t need it because we’ve replaced its entire

functionality with built-in classes!

If you’ve been following along, the home-page.xml file should look like listing 10.3 and your app should

look like figure 10.4. Great work!

Listing 10.3 An excerpt from home-page.xml after refactoring with built-in theme classes

<StackLayout>

 <Label class="h1 text-center m-y-10" text="{{ title }}" />

 <Image src="~/images/home.png"></Image>

 <Label class="footnote text-center m-y-10" text="{{ footer }}" />

 <StackLayout orientation="horizontal" horizontalAlignment="center" >

 <Button class="btn btn-primary btn-rounded-sm btn-active m-r-20"

 text="About" />

 Branstein / The NativeScript Book 236

 <Button class="btn btn-primary btn-rounded-sm btn-active m-l-20"

 text="Continue" tap="onContinueTap" />

 </StackLayout>

</StackLayout>

Figure 10.4 The refactored home page of the Pet Scrapbook, using built-in theme classes.

10.4 Styling list views

Now that we’ve refactored the home page of the Pet Scrapbook to use the built-in CSS classes, let’s move

on to the scrapbook page. As you’ll recall, this page is a list of scrapbook pages (or entries). Listings 10.4,

10.5, and figure 10.5 show the relevant code from the scrapbook page after chapter 9.

Listing 10.4 An excerpt from scrapbook-page.xml after chapter 9

<ListView items="{{ pages }}" itemTap="onItemTap">

 <ListView.itemTemplate>

 <StackLayout orientation="horizontal">

 <Image src="{{ image }}"/>

 <Label text="{{ title, title + ' Scrapbook Page' }}" />

 </StackLayout>

 </ListView.itemTemplate>

</ListView>

Listing 10.5 Styles form scrapbook-page.css after chapter 9

label {

 text-align: center;

 margin-top: 10px;

 margin-bottom: 10px;

}

image {

 height: 50px;

 width: 50px;

 Branstein / The NativeScript Book 237

}

Figure 10.5 The scrapbook page at the end of chapter 9.

We didn’t entirely ignore style for this page, but let’s agree we can do a little better. Just like text and

buttons have built-in class rules, list views can be styled by using themes. List views are styled with the

list-group and list-group-item classes. The list-group class is applied to the ListView element, and the list-

group-item class is applied to the top-level layout container within the list view item template. Listing

10.6 shows how to apply these classes.

Listing 10.6 Adding list-group and list-group-item to scrapbook-page.xml

<ListView items="{{ pages }}" itemTap="onItemTap" class="list-group"> #A

 <ListView.itemTemplate>

 <StackLayout orientation="horizontal" class="list-group-item"> #B

 <Image src="{{ image }}"/>

 <Label text="{{ title, title + ' Scrapbook Page' }}" />

 </StackLayout>

 </ListView.itemTemplate>

</ListView>

#A The list-group class is applied to the ListView element

#B The list-group-item class is applied to the item template’s layout container

Before we show you the results, let’s do a few more things, starting with the item template’s label.

The list view theme has two classes for text: list-group-item-heading and list-group-item-text. Together,

they’re intended to be used for heading and normal text within a list view. We don’t really have a heading,

so we’ll stick with the normal text class applied to the label:

<Label text="{{ title, title + ' Scrapbook Page' }}"

 class="list-group-item-text" />

The last change we’ll make is with our image. It’s customary in mobile apps to have an image or icon

next to text within a list view, and the list view theme doesn’t disappoint.

TIP Apply the thumb class to an image within a list view item template to turn the image into a

thumbnail.

Let’s update our image to include the thumb class:

<Image src="{{ image }}" class="thumb" />

And we’re finished! Figure 10.6 shows the results of adding a few theme styles.

 Branstein / The NativeScript Book 238

Figure 10.6 A refactored scrapbook-page.xml page incorporating list view theme styles.

10.5 Working with images

The Pet Scrapbook list view is good enough, but we can’t resist adding a one final change to the thumbnail

image. The built-in theme has two nifty classes: img-rounded and img-circle that allow you to add rounded

corners to and image and even make the image circular. We’re fans of the circular image look, so let’s

add the img-circle class to the thumbnail image:

<Image src="{{ image }}" class="thumb img-circle" />

WARNING Behind the scenes, the img-rounded and img-circle classes apply the border-radius CSS

property to an image. Border-radius (and by extension img-rounded and img-circle) requires that the

image have an explicit height and width set. Our example works because the thumb class explicitly set

the width and height for us, but you should keep this in mind because it’s easy to forget and stare at

your CSS for hours wondering why it doesn’t work. Hopefully, we can save you some time (and sanity)!

After adding the img-circle class, let’s look (figure 10.7).

Figure 10.7 The scrapbook-page list view with a circular thumbnail image.

The scrapbook list view looks great! It’s time to move on to the scrapbook update page, where you’ll

learn how to style the data entry form with a few more classes within the theme package.

 Branstein / The NativeScript Book 239

NOTE Don’t forget to delete the scrapbook-page.css file. Now that we’ve used the built-in themes,

there’s no need for the custom CSS styles.

10.6 Styling data-entry forms

So far, the theme styles we’ve applied to the Pet Scrapbook were quick changes that didn’t require us to

modify the UI structure. All we had to do was apply classes to an existing element. Well, we’re about to

change it up by adding several structural XML elements to help us refactor and style the scrapbook’s

update page. The modifications aren’t extensive or really that invasive, but we’ll be making some changes.

Stick with us because it’ll be worth it.

The Pet Scrapbook’s update page is intended to be a simple data-entry form, but the product of chapter

9 is a far stretch from simple (figure 10.8).

Figure 10.8 The scrapbook update page, as built in chapter 9.

 Branstein / The NativeScript Book 240

We can do better. Listing 10.7 is our starting point – the scrapbookUpdate-page.xml at the end of

chapter 9.

Listing 10.7 The scrapbookUpdate-page.xml file at the end of chapter 9

<Page loaded="onLoaded">

 <StackLayout>

 <Label text="{{ title, title + ' Scrapbook Page' }}" />

 <TextField class="header" text="{{ title }}" hint="Enter title..."/> #A

 <Label text="{{ 'Age: ' + calcAge(year, month, day) + #B

 ' years old'}}" /> #B

 <DatePicker year="{{ year }}" month="{{ month }}" day="{{ day }}" /> #B

 <ListPicker items="{{ genders }}" selectedIndex="{{ gender }}" /> #C

 <Image src="{{ image }}" stretch="none" /> #D

 <StackLayout orientation="horizontal"> #D

 <Label text="{{ (lat, long), 'Picture taken at ' + #D

 lat + ', ' + long }}" /> #D

 </StackLayout> #D

 <Button tap="onAddImageTap" text="Add Image" />

 <Button tap="onDoneTap" text="Done"/>

 </StackLayout>

</Page>

#A Page’s title (or name) data entry

#B Birth date selection

#C Gender selection

#D Picture selection

Like most data entry pages, the update page is separated into discrete areas for each data point we’re

collecting: the title, birth date, gender, and picture. But, there’s a problem – everything blends together

in the UI. It’s not very user-friendly. Let’s fix that by using the data form theme classes.

As we mentioned earlier, the data form theme classes impose an XML structure on your UI, to ensure

uniformity and consistency. In summary, a data form consists of a primary stack layout and a series of

child stack layouts. The primary layout is assigned the class form, and each series of child layouts is

assigned the class input-field. Let’s see this in action by wrapping each of our data entry fields with this

structure (listing 10.8).

Listing 10.8 Refactored scrapbookUpdate-page.xml file using the form theme classes

<Page loaded="onLoaded">

 <StackLayout>

 <Label text="{{ title, title + ' Scrapbook Page' }}" />

 <StackLayout class="form"> #A

 <StackLayout class="input-field"> #B

 <TextField class="header" text="{{ title }}" #B

 hint="Enter title..."/> #B

 </StackLayout>

 Branstein / The NativeScript Book 241

 <StackLayout class="input-field"> #B

 <Label text="{{ 'Age: ' + calcAge(year, month, day) + #B

 ' years old'}}" /> #B

 <DatePicker year="{{ year }}" month="{{ month }}" #B

 day="{{ day }}" />

 </StackLayout>

 ... #C

 <Button tap="onAddImageTap" text="Add Image" />

 <Button tap="onDoneTap" text="Done"/>

 </StackLayout>

 </StackLayout>

</Page>

#A Primary stack layout is added with the form class

#B Each data field label and control is wrapped in the input-field class

#C Remaining fields not shown, but would be wrapped in a stack layout with the input-field class

We made several structural changes to the update page, but they are straightforward. We added a

primary stack layout with the form class. This stack layout encompasses the data entry form. Within the

primary stack layout, we wrapped each data entry field with another stack layout. The input-field class is

then applied to the stack layout.

This doesn’t change the look of the page radically, as you can see in figure 10.9, additional space is

added between and around each element with an input-field class applied.

 Branstein / The NativeScript Book 242

Figure 10.9 The scrapbook update page with data-entry fields wrapped in a stack layout with the input-field class

applied.

10.6.1 Structuring data entry fields

We’re almost there, but there’s something missing. Standard data entry fields are composed of two

elements: a label to describe the data entry field and a data entry control (like a text field, date picker,

and so on).

TIP When creating a data entry page, combine a label and the data entry element together to create a

consistent UI.

We’re not following this pattern – look at the title, birth date, and gender fields. How is a user supposed

to know the date picker is the birth date? Some users may not have trouble connecting the age label with

the date picker below, but uniformity in the UI creates a consistent user experience.

Let’s fix this by adding in consistent labels for the title, birth date, and gender, and image fields. As

we’re adding labels to the input field stack layouts, we’ll apply two classes: label and input.

DEFINITION The label and input classes are used to style input field labels and text fields. They are

part of the theme styles and help to create a more consistent UI experience.

Starting with the title field, we’ll add a label with the label class. We’ll also change the name of the

field to name because it’s a little more descriptive:

<Label class="label" text="Name:" />

Next up is the birth date label. The existing label displays the age, but it could be confusing. Let’s call

it what it is – the birth date, but also display the calculated age (listing 10.9).

 Listing 10.9 Updated birth date label in the scrapbookUpdate-page.xml file

<Label class="label"

 text="{{ (year, month, day), 'Birth date: ' + #A

 (year === null ? #B

 '' : #B

 '(' + calcAge(year, month, day) + ' years old)') }}" #C

/>

#A Always display the birth date field label

#B If the data bound year field is null, display nothing

#C Conditionally display the calculated age when a date is selected

We’re using a slightly more advanced data-binding expression for the label’s text value, so let’s break

it down step-by-step. First, we always want to display Birth date:, so this is part of the data-binding

expression. Second, we want to conditionally display the age, which is calculated with the calcAge()

function. To conditionally display the age, we use the ternary operator.

DEFINITION The ternary operator is a concise way of executing an if-then-else statement by using a

syntax of {conditional-statement} ? {evaluate-if-true} : {evaluate-if-

 Branstein / The NativeScript Book 243

false}. For example, an if-then-else statement of if x, then y, else z is expressed as x ?

y : z using the ternary operator.

TIP Avoid displaying undefined or null data values in your UI – it’s distracting to users. Use the ternary

operator in data-binding expressions to control the conditional display of data-bound fields.

The last two fields are like the name field. We’ll add a label to into their input field stack layouts and

apply the label class.

<Label text="Gender:" class="label" />

<Label text="Image:" class="label" />

While we’re working on the image data entry field, let’s re-use the footnote class you learned about

earlier and change the longitude and latitude label into a footnote using the ternary operator to only

display the location if the longitude and latitude aren’t undefined (listing 10.10).

Listing 10.10 Refactored image location label using ternary operator in the scrapbookUpdate-

page.xml file

<Label class="footnote"

 text="{{ (lat, long),

 (lat === undefined || long === undefined) ?

 '' :

 'Picture taken at ' + lat + ', ' + long }}"

/>

If you’ve been following along, your update page should look like listing 10.11 and figure 10.10.

NOTE Before running your app, don’t forget to remove the custom label style from the

scrapbookUpdate-page.css file. If you don’t, your app won’t look like ours.

Listing 10.11 Refactored scrapbookUpdate-page page using form theme classes

<Page loaded="onLoaded">

 <StackLayout>

 <Label text="{{ title, title + ' Scrapbook Page' }}" />

 <StackLayout class="form">

 <StackLayout class="input-field">

 <Label text="Name:" class="label" />

 <TextField class="header" text="{{ title }}"

 hint="Enter title..."/>

 </StackLayout>

 <StackLayout class="input-field">

 <Label class="label"

 text="{{ 'Birth date: ' + (year === null ?

 '' : '(' + calcAge(year, month, day) + ' years old)') }}" />

 <DatePicker year="{{ year }}" month="{{ month }}"

 day="{{ day }}" />

 </StackLayout>

 <StackLayout class="input-field">

 Branstein / The NativeScript Book 244

 <Label text="Gender:" class="label" />

 <ListPicker items="{{ genders }}" selectedIndex="{{ gender }}" />

 </StackLayout>

 <StackLayout class="input-field">

 <Label text="Image:" class="label" />

 <Image src="{{ image }}" stretch="none" />

 <Label text="{{ (lat, long),

 (lat === undefined || long === undefined) ?

 '' :

 'Picture taken at ' + lat + ', ' + long }}" />

 </StackLayout>

 </StackLayout>

 <Button tap="onAddImageTap" text="Add Image" />

 <Button tap="onDoneTap" text="Done"/>

 </StackLayout>

</Page>

Figure 10.10 The update page refactored to use form theme classes and ternary operator data-binding expressions to

conditionally display text.

 Branstein / The NativeScript Book 245

We’ve covered a lot of ground with themes, and you’ve learned how to integrate the built-in theme

classes into your app to save time and make more consistent UIs. There’s still more to learn about themes,

but it’s awareness of additional classes for coloring text and other UI elements. We’re not going to cover

these specifically in this chapter, but we’ll opportunistically introduce you to them throughout the rest of

the book. If you’re interested in learning more right now, the NativeScript documentation has a complete

listing of every class included in the theme package. Check it out at

https://docs.nativescript.org/ui/theme.

As we move away from themes, the update page still doesn’t seem complete. In fact, it doesn’t appear

functional and looks cluttered. The birth date picker and gender list picker take up a lot of room, which

causes users to scroll down the page. We can do better. In the next chapter, you’ll learn how to clean up

the UI and make it more functional.

PLAY The final code from chapter 10 can be found in the Playground at

https://play.nativescript.org/?template=play-js&id=L3oOX0&v=14. Check it out!

10.7 Summary

In this chapter, you learned the following:

▪ You can style your app with a package of pre-built CSS styles by installing the nativescript-theme-

core npm package.

▪ CSS margin and padding can be applied to elements with the a short-hand class name syntax of

{m/p}-{t/b/l/r}-{#}, where m/p stands for margin and padding, t/b/l/r stands for top, bottom,

left, and right, and # is a number of pixels.

▪ Using the theme CSS classes form, input-field, label, and input, you can create consistent data

entry forms.

▪ The ternary operator ({if-conditional} ? {return-if-true} : {return-if-false})

is a short-hand logical expression that can replace an if-then-else statement.

10.8 Exercises

In this chapter, you learned how to use themes to style the UI of your app quickly and easily. Use what

you’ve learned from this chapter to do the following:

▪ Change the color scheme of your app from the light color scheme to the dark color scheme.

▪ On the detail page, use the ternary operator to show the text "Unknown Pet's Scrapbook Page"

when the title field is null or undefined, and "{title}'s Scrapbook Page" when a value is entered for

the title. For example, if "Pkitty" is entered into the title field, the page title should read, "Pkitty's

Scrapbook Page".

▪ On the detail page, make the title label standout by centering it and making it a heading (h1). Also

add a 10-pixel margin to the y-axis.

10.9 Solutions

▪ To change the color scheme of the Pet Scrapbook from the light color scheme to the dark color

 Branstein / The NativeScript Book 246

scheme, replace the import statement at the top of the app.css file with a reference to the dark

color scheme: @import 'nativescript-theme-core/css/core.dark.css';.

▪ To update the detail page’s title label, replace it with: <Label text="{{ title, (title ===

null || title === undefined ? 'Unknown Pet' : title + '\\\'s') + ' Scrapbook

Page'" />

▪ To make the title label stand out, add the following class to the label: class="h1 text-center

m-y-10".

 Branstein / The NativeScript Book 247

11
Refining user experience

This chapter covers

▪ Improving user experience by moving date and list pickers to modal dialogs

▪ Targeting multiple screen resolutions

In the last chapter, you learned how NativeScript themes can make your apps look more professional with

a minimal amount of effort. Using the Pet Scrapbook as an example, we styled the home, scrapbook list,

and update pages with the built-in light color scheme. Even though the app has started to look more

professional, the UI and functionality of the update page is clunky.

In this chapter, you’ll learn how to create a cleaner and more concise UI by using modal dialogs. We’ll

also tackle the problem of multiple screen sizes, and when we’re finished, we’ll have a great looking app

for both phones and tablets. Let’s go!

11.1 Building professional UIs with modals

In chapter 10, you learned how to replace custom CSS styles with the built-in theme classes. We left off

with the update page partially complete (figure 11.1).

 Branstein / The NativeScript Book 248

Figure 11.1 The update page refactored to use theme classes.

We think the update page is incomplete because the birth date picker and gender list picker take up

too much room, creating a cluttered appearance. In mobile apps, appearance matters, so we’re going to

build a more professional UI by using modal dialogs.

DEFINITION Modal dialogs are a UI design concept where a user’s interaction on a page prompts the

UI to temporarily display a second page on top of the first page. When the user completes their

interaction with the second page, it disappears and the UI is redirected to the first page. This UI

interaction pattern (and the second page that is displayed) is referred to as a modal dialog because the

second page often contains a dialog box or other UI element that is too big to fit on the first page.

Modal dialogs (a.k.a. modal pages or simply modals) are a great way to hide complex UI interactions

on a page, and they display only when they’re needed. For this reason, we’ll be using modals to replace

the birth date picker and gender list picker UI elements on the update page.

The goal of these changes is to create a less-complex UI that can fit on to the screen without the need

for scrolling. To support the use of modals, the user’s workflow and page navigation will change. Instead

 Branstein / The NativeScript Book 249

of using the date picker and list picker directly on the update page, the user will tap a text field to enter

the birth date and gender. When the text fields are tapped, a modal dialog will appear, containing the

birth date picker and gender list picker. When they have selected the desired values, the modal dialog is

closed and the selected values are displayed on the update page. Figure 11.2 shows a preview of this

workflow for the birth date picker.

Figure 11.2 A user’s interaction with the update page with modal dialogs used to select the birth date.

We’ll reference this workflow as we refactor and build out new modals for the birth date picker and

the gender list picker. Let’s get started!

11.1.1 Moving date pickers to modal pages

Before we get knee-deep in code and UI refactoring, let’s take a moment and outline our approach to this

refactoring.

TIP When you’re about to undertake a large refactor, it’s a good idea to outline the steps you’ll take.

This will help collect your thoughts and document your plan. Long-term, your plan will help you if you

need to step away for an extended period, as well as provide a coordination/collaboration point if you’re

working with others. Also, don’t feel bad if your plan changes half-way through – just update your plan

and continue forward.

Our refactoring plan has eight steps. Wow! Eight steps! Yeah, we know - it’s a lot. If you’re feeling

overwhelmed, or if you’re not sure you could have come up with these steps on your own, that’s ok. We’re

going to go through each step, explaining it in detail.

1. Move the birth date picker element to a new page.

2. Replace the birth date picker with a text field, and prevent users from editing the text – our

underlying page code will set the field value via data binding (step 7).

3. Replace the month, day, and year properties of the scrapbook observable with the birthDate

property

 Branstein / The NativeScript Book 250

4. Add a tap event and event handler to the text field, navigating to the birth date picker modal

page when tapped. Pass in a close callback function the modal page will call when it is closed to

pass back data to the update page.

5. On the birth date picker modal page, handle the shownModally event, saving a reference to the

close callback function.

6. Data bind the birth date picker on the modal page.

7. Add a tap event and event handler to the done button, calling the modal’s close callback when

tapped. This will pass back the selected birth date to the update page.

8. Handle the close callback method on the update page, updating the birth date text field’s value

by updating its data bound field.

Now that we have our plan, let’s get started by moving the date picker to a new page.

STEP 1: MOVING THE DATE PICKER TO A NEW PAGE

Start by creating two new files in the app/views folder: selectDate-page.xml and selectDate-page.js. But

wait a minute! We’re creating a page for a modal? Yep. Modals are simply pages, and you can create them

just like you create any other page. Because they’re pages, the file-naming conventions for the XML,

JavaScript, and CSS files apply.

WARNING We said modals are just like pages, but there are technically some subtle differences

between modals and pages. Although you define modals like you define pages, modals raise new events

when loaded and navigating away from modals works differently. We’ll cover these differences as we

go, but for now, you can treat them just like you would a page.

Let’s continue by adding a page element, stack layout, date picker, and button to the UI of the new page,

as shown in listing 11.1.

 Listing 11.1 The selectDate-page.xml file

<Page shownModally="onShownModally" loaded="onLoaded"> #A

 <StackLayout>

 <DatePicker date="{{ date }}" /> #B

 <Button class="btn btn-primary btn-rounded-sm btn-active"

 text="Done" tap="onDoneTap" />

 </StackLayout>

</Page>

#A We’ll be handling the shownModally and loaded events

#B Instead of binding to the year, month, and day properties, we can bind directly to the date property

You’ll notice a few new things we’ve introduced on this page. The first is the shownModally event.

DEFINITION The shownModally event is raised when a page is displayed as a modal dialog. It’s like a

page’s onLoaded event, but raised as soon as the modal is shown on the mobile device.

In addition to the shownModally event, we’ve changed the data-bound property on the date picker.

On the update page, we used the year, month, and day properties:

 Branstein / The NativeScript Book 251

<DatePicker year="{{ year }}"

 month="{{ month }}" day="{{ day }}" />

Data binding to these three properties isn’t necessary, and the same thing can be accomplished by

binding directly to the date property of the date picker:

<DatePicker date="{{ date }}" />

That’s all there is to the UI of the date picker modal page. We’ll come back to the JavaScript to wire

up our events and data binding in a later step.

STEP 2: REPLACE THE DATE PICKER WITH A TEXT FIELD

Now that we’ve create a modal page with a date picker, we can remove the date picker from the update

page. Remove it, then replace it with text field. While you’re there, update the label’s databinding

expression to use birthday instead of month, day, and year (listing 11.2).

 Listing 11.2 The text field replacing the birth date data picker in scrapbookUpdate-page.xml

<Label text="{{ (birthDate), 'Birth date: ' +

 (birthDate === null ?

 '' :

 '(' + calcAge(birthDate) + ' years old)') }}"

 class="label" />

<TextField class="input" editable="false"

 text="{{ birthDate, birthDate | dateConverter(dateFormat) }}" #A

 tap="onBirthDateTap" hint="Enter a birth date..." />

#A dateConverter is a type converter data-binding expression used to convert the birth date from a date to a

string

On the surface, we’re adding a typical text field, but there are a few new concepts introduced – the

first being the editable property.

DEFINITION The editable property of a text field, when set to false, prevents users from tapping the

text field and changing the value. This is similar to disabling a text field, but disabling changes the color

of text to grayed out within the text field. When the editable property is set to false, users can’t edit

the content, and the content doesn’t appear greyed-out.

We’ve also introduced a new type of data-binding expression: {{ birthDate, birthDate |

dateConverter(dateFormat) }}. This type of data-binding expression contains something called a

converter.

DEFINITION Converters solve a very specific problem during two-way data binding: conversion

between two data types. More specifically, data within a data-bound observable may be stored as a

complex object (for example., a date), but the date value may be bound to a text field, which displays

a string. Converters provide a way to convert between these two objects.

Looking at our example, the birthDate property of our data-bound observable is a date, and the text

property of the text field displays a string. On its own, NativeScript data binding doesn’t know how to

convert between two different objects. It’ll guess, but often it’s wrong. Think about it for a minute: there

are dozens of ways to display a date: US format (MM/DD/YYYY or MM/DD/YY), ISO format (YYYY-MM-

 Branstein / The NativeScript Book 252

DD), and so on. To solve this problem, you create a converter function that explicitly describes how to

convert the values.

Internationalization (i18n) and NativeScript

You shouldn’t assume your apps will be used in a single country and support a single language. In fact,

your app may be used all over the world.

The process of developing your app so it can be easily adapted to support multiple languages and

cultures is called internationalization (i18n).

Although we’re not going to focus on i18n in this book, there is a verified plugin available in the

NativeScript Marketplace named Localize that implements i18n. By using this plugin, you can build you

app so it can support multiple languages and cultures. If your app requires support for i18n, or you

want to build an app that is accessible to multiple languages and cultures, check out this plugin at

https://market.nativescript.org/plugins/nativescript-localize.

You can tell that the {{ birthDate, birthDate | dateConverter(dateFormat) }} data-

binding expression uses a convertor because of the vertical bar | symbol. Functions following the vertical

bar are converter functions.

Now that you know what a converter function is, you need to know how to define a converter function.

They’re defined like normal functions but need to be registered globally in the app.js file. Let’s look at the

function definition in our app.js file (listing 11.3).

Listing 11.3 Converter function for converting dates to MM/DD/YYYY format, defined in the app.js

file

require("./bundle-config");

var application = require("application");

var dateConverter = function(value, format) { #A

 if (value === null || value === undefined || value === '') return ''; #A

 var parsedDate = new Date(value); #A

 #A

 var result = format; #A

 var day = parsedDate.getDate(); #A

 result = result.replace("DD", day); #A

 var month = parsedDate.getMonth() + 1; #A

 result = result.replace("MM", month); #A

 result = result.replace("YYYY", parsedDate.getFullYear()); #A

 return result; #A

}; #A

var resources = application.getResources(); #B

resources.dateConverter = dateConverter; #C

resources.dateFormat = "MM/DD/YYYY"; #D

application.run({ moduleName: "app-root" });

 Branstein / The NativeScript Book 253

#A Converter functions take in two parameters: the value to convert and the format (or options) to use during

conversion

#B Application resources are a global object collection

#B Converter functions should be registered globally in the resources collection

#C Also register the format string used globally so we can share it throughout the app

Converter functions are defined like a normal function and take two parameters: the value to convert

and a format (or options) string that can be used to specify how to format the value. The

dateConverter() function expects a format string with the letters MM, DD, and YYYY inside. When run,

it uses the format string to replace MM, DD, and YYYY with the month, day, and year.

To use the converter function in a data-binding expression, it needs to be registered globally in the

application resources collection. While we’re registering objects globally, we add an entry for the date

format (MM/DD/YYYY) that we want to use within data-binding expressions.

TIP If you’ll be using a date format more than once in your app, it’s a good idea to register it globally.

If you ever need to change it, you have a single place to go to update it throughout your app.

After making the changes to the app.js file and the scrapbookUpdate-page.xml file, the update page

should look like figure 11.3. If you’re following along, go ahead and try to tap the birth date text field.

You shouldn’t be able to because it’s not editable!

Figure 11.3 The birth date input field changed from a date picker to a text box.

STEP 3: REPLACE THE MONTH, DAY, AND YEAR PROPERTIES OF THE SCRAPBOOK OBSERVABLE WITH THE BIRTHDATE

PROPERTY

After adding the text field to the update page, you’ll need to update the scrapbook observable to use the

birthDate property, instead of the month, day, and year properties. Update the scrapbookPageModel()

and onLoaded() functions in the scrapbook-page.js file with the code from listing 11.4.

Listing 11.4 Updated scrapbookPageModel() and onLoaded() functions in the scrapbook-page.js

file to support databinding to the birthDate property

function scrapbookPageModel(id){

 var model = new observable.Observable();

 model.id = id;

 model.genders = ["Female", "Male", "Other"];

 model.calcAge = function(birthDate){

 var now = Date.now();

 var diff = Math.abs(now - birthDate) / 1000 / 31536000;

 return diff.toFixed(1);

 Branstein / The NativeScript Book 254

 };

 return model;

}

exports.onLoaded = function(args) {

 var page = args.object;

 var scrapbook = new observable.fromObject(

 { pages: new observableArray.ObservableArray() });

 var pages = fileSystemService.fileSystemService.getPages();

 if (pages.length !== 0) {

 pages.forEach(function (item) {

 var model = new scrapbookPageModel();

 model.id = item.id;

 model.title = item.title;

 model.gender = item.gender;

 model.birthDate = item.birthDate;

 model.image = item.image;

 model.lat = item.lat;

 model.long = item.long;

 scrapbook.pages.push(model);

 });

 }

 else {

 scrapbook = new observable.fromObject({

 pages: new observableArray.ObservableArray()

 });

 }

 page.bindingContext = scrapbook;

};

The savePage() and getPages() functions of the file system service also needs updated. Use the

code in listing 11.5.

Listing 11.5 Updated savePage() fileSystemService.js to support databinding to the birthDate

property

fileSystemService.prototype.getPages = function () {

 var pages = [];

 if (this.file.readTextSync().length !== 0) {

 pages = JSON.parse(this.file.readTextSync());

 }

 pages.forEach(function (page) {

 page.birthDate = new Date(page.birthDate); // #A

 if (page.imageBase64 != null) {

 page.image = imageModule.fromBase64(page.imageBase64);

 }

 });

 return pages;

}

 Branstein / The NativeScript Book 255

fileSystemService.prototype.savePage = function (scrapbookPage) {

 var pages = this.getPages();

 var index = pages.findIndex(function (element) {

 return element.id === scrapbookPage.id;

 });

 if (index !== -1) {

 pages[index] = {

 id: scrapbookPage.id,

 title: scrapbookPage.title,

 gender: scrapbookPage.gender,

 birthDate: scrapbookPage.birthDate,

 imageBase64: scrapbookPage.image != null ?

 scrapbookPage.image.toBase64String("png") : null,

 lat: scrapbookPage.lat,

 long: scrapbookPage.long

 };

 }

 else {

 pages.push({

 id: scrapbookPage.id,

 title: scrapbookPage.title,

 gender: scrapbookPage.gender,

 birthDate: scrapbookPage.birthDate,

 imageBase64: scrapbookPage.image != null ?

 scrapbookPage.image.toBase64String("png") : null,

 lat: scrapbookPage.lat,

 long: scrapbookPage.long

 });

 }

 var json = JSON.stringify(pages);

 this.file.writeText(json);

};

#A create a new Date object when date is read from the file

STEP 4: NAVIGATING TO THE MODAL PAGE

After adding the text field to the update page, let’s wire-up the tap event handler by adding the

onBirthDateTap() function to the scrapbookUpdate-page.js file (listing 11.6).

NOTE We've also updated the onLoaded() function to store a reference to the page globally.

Listing 11.6 The updated onLoaded() function and new onBirthDateTap() function to navigate to

the birth date selection modal page

var page;

exports.onLoaded = function(args) {

 page = args.object;

 var scrapbookPage = page.navigationContext.model;

 page.bindingContext = scrapbookPage;

};

 Branstein / The NativeScript Book 256

exports.onBirthDateTap = function(args) {

 var modalPageModule = "views/selectDate-page";

 var context = { birthDate: page.bindingContext.birthDate };

 var fullscreen = true;

 page.showModal(

 modalPageModule,

 context,

 function closeCallback(birthDate) { #A

 page.bindingContext.set("birthDate", birthDate); #A

 }, #A

 fullscreen

);

};

#A function called by the modal page when it closes, and is used to pass data from the modal page back to this

page

Navigating between the update page to the modal page is similar to navigating between regular non-

modal pages, except you use the showModal() method of the page. The showModal() function takes

four parameters:

▪ the destination page (views/selectData-page, which is the page we just created).

▪ the context (or data) you’d like to share with the modal page (we’ll be passing in the birth date

value stored in our page’s binding context.

▪ a close callback function that will be called by the modal page when it is closed.

▪ a boolean value indicating whether the modal will be displayed full screen when opened.

In an earlier chapter, you learned about navigating between pages, so the showModal() should seem

familiar, but the close callback function is something new.

DEFINITION The close callback function is a method called by the modal dialog when it’s closed. In

addition to closing the modal window, it is the mechanism for passing context (or data) back from the

modal.

The close callback function may seem a bit confusing, but we’re going to wait to fully explain it because

it will make more sense when you see how it’s used from within the modal page.

For now, here’s what you should take-away: this function will be executed when the birth date selection

modal page is closed, and the selected birth date will be passed back as an argument. When this happens,

we’ll update the birth date text field’s text property by updating its data-bound property:

page.bindingContext.set("birthDate", birthDate).

With the show modal JavaScript code complete, tapping the birth date text field will open the birth

date selection page, as shown in figure 11.4.

 Branstein / The NativeScript Book 257

Figure 11.4 The birth date selection page shown modally after tapping on the birth date text field.

STEP 5: HANDLING THE MODAL’S SHOWNMODALLY EVENT AND LOADED EVENTS

If you’re following along with our workflow, we’ve created a new modal page containing our date picker,

replaced the data picker with a text field on the update page, and navigated to the modal page. In this

step, we’ll be initializing the modal page by handling the shownModally event.

We haven’t written any JavaScript for the selectDate-page.js file yet, so let’s look at the contents in

listing 11.7. Add this to the selectDate-page.js file.

Listing 11.7 Responding to the shownModally event of the selectDate-page page

var closeCallback;

exports.onShownModally = function(args) { #A

 closeCallback = args.closeCallback; #A

}; #A

#A when the modal is shown, you have access to the close callback function, be sure to save a reference to it

When the modal page is shown, you have access to the close callback function through a property

named closeCallback. We saved a reference to this method so we can call it when we’re finished.

WARNING It’s imperative that you store a reference to the close callback function when a modal is

shown. Without a reference to the close callback, you’ll be unable to close the modal and pass data to

the page that opened the modal.

STEP 6: SET THE PAGE’S BINDING CONTEXT TO DATA BIND THE DATE PICKER

Now that we’ve saved a reference to the close callback, let’s turn our attention to binding the date picker

to an observable so we can easily get the selected value via code. Listing 11.8 adds to the selectDate-

page.js file, establishing a binding context for the page.

Listing 11.8 Establishing a binding context when the selectDate-page page is loaded

var observableModule = require("data/observable");

 Branstein / The NativeScript Book 258

var model;

exports.onLoaded = function(args) {

 var page = args.object;

 model = new observableModule.fromObject({

 date: new Date(Date.now())

 });

 page.bindingContext = model;

};

The loaded event handler is code you’ve seen before to create a new observable with date property.

You’ll recall from chapter 8 that setting the page’s binding context enables you to use mustache syntax

binding in XML.

Back in step 1, we created the UI for the birth date modal, which included a data-bound date picker:

<DatePicker date="{{ date }}" />. By setting the binding context in listing 10.8 we’ve linked

together the observable’s date property with the date picker’s date property. This means changes to the

date picker’s selected date value will be synchronized into the observable.

STEP 7: HANDLING THE DONE BUTTON’S TAP EVENT

Throughout this large refactoring, we’ve been promising to explain the close callback function and how

it’s used. If you recall, the close callback originates when it is passed as an argument to the showModal()

function that shows the modal dialog (listing 11.9).

Listing 11.9 The origin of the close callback function as it is passed into the showModal() function

page.showModal(

 modalPageModule,

 context,

 function closeCallback(birthDate) {

 page.bindingContext.set("birthDate", birthDate);

 },

 fullscreen

);

We can follow the journey of the close callback through to the shown modally event’s handler, where

we saved a reference to it, as shown in listing 11.10:

Listing 11.10 Saving a reference to the close callback function when the birth date selection modal

is shown

var closeCallback;

exports.onShownModally = function(args) {

 closeCallback = args.closeCallback;

};

Previously, we said it was critically important to save a reference to a modal’s close callback function

but didn’t explain fully. Although modal dialogs are like pages, you don’t navigate away from a modal as

you do a page. Instead, modals are closed, returning control (and data) back to the previous page. We’ve

been following the journey of the close callback because it’s essential to closing a modal. In fact, the close

callback is how to close a modal.

 Branstein / The NativeScript Book 259

NOTE To close a modal dialog, call the close callback function, passing in any data that needs to be

returned to the previous page.

Now that we’ve learned how the close callback works, let’s flesh out the Done button’s tap event

handler by closing the modal dialog and passing back the selected date. Add the onDoneTap() function

to the selectDate-page.js file:

exports.onDoneTap = function(args) { closeCallback(model.date); };

Closing a modal and passing data back is really that easy: one function does it all.

STEP 8: USING THE CLOSE CALLBACK TO UPDATE THE UI

We’re almost there, and the last step is to update the UI by setting the birthDate property of the page’s

binding context to the birth date passed back by the modal dialog’s close callback event.

There’s actually nothing to do because we’ve already written the code to do this. When the close

callback function was passed to the showModal() function, it’s body included a statement to update the

birthDate property: page.bindingContext.set("birthDate", birthDate);.

And that’s it - the refactoring is complete. We’ve simplified the UI by replaced the birth date picker

with a text field and moved the date picker to a modal dialog. The result of the refactoring can be seen in

figure 11.5.

 Branstein / The NativeScript Book 260

Figure 11.5 The scrapbookUpdate-page page with a refactored birth date input field.

HOMEWORK TIME

With the birth date input field updated, the next logical refactoring is the gender list picker. Refactoring

the list picker to a modal dialog should be almost identical to the date picker, so we’re going to challenge

you to do the refactoring before the end-of-chapter exercise. We know you can do it, just start off with a

plan. If you get stuck, don’t worry: you can always peek at the code in our Github repository:

https://github.com/mikebranstein/TheNativeScriptBook/tree/master/Chapter11/PetScrapbook.

When you’ve finished refactoring the list picker, your final page should look like figure 11.6.

 Branstein / The NativeScript Book 261

Figure 11.6 The scrapbookUpdate-page page with both date picker and list picker input fields refactored to modals.

11.2 Adding tablet support to an app

Throughout this chapter, you’ve learned how to create more consistent and professional-looking apps with

themes and modal dialogs. With these tools, we transformed the Pet Scrapbook app into a more visually

appealing app. The changes we made really helped make the app look more professional, but we failed

to think about tablets. Imagine you had a tablet running the Pet Scrapbook. Now think about the page

with a list of scrapbook pages. Would it make sense to have the list of scrapbook pages take up the

entirety of a tablet’s screen? Figure 11.7 shows how much space is wasted when the app is run on a

tablet.

 Branstein / The NativeScript Book 262

Figure 11.7 The Pet Scrapbook running on an iPad, note the large amount of unused space in the UI.

With a larger screen available, it feels wasteful to have the entire screen dedicated to the list of

scrapbook pages. A better use of the available screen space is a split screen: the list of pages on the left,

and selecting a page from the list displays the details on the right. Figure 11.8 shows the desired effect

in action.

 Branstein / The NativeScript Book 263

Fig 11.8 A landscape view of the Pet Scrapbook on an iPad, with the page list on the left and the detail view on the

right.

In this section, we’ll continue to make the Pet Scrapbook a more professional app by adding support

for multiple screen resolutions.

11.2.1 Targeting multiple screen resolutions

The Pet Scrapbook started with three pages: the home page (home-page.xml), a list of all scrapbook

pages (scrapbook-page.xml), and a scrapbook page where the details of a scrapbook could be updated

(scrapbookUpdate-page.xml). When these pages are run on a mobile device, they will look the same

regardless of the screen size.

Professional apps account for both phones and tablets, so we'd like to show a different list page when

the app is run on a tablet. But, before we proceed with a tablet-specific version of the app, there’s a few

scenarios we should consider: using the app on a phone or tablet, and using the app in portrait or

landscape. Table 11.1 breaks down these options.

Table 11.1 Scrapbook list and details page behaviors, based on device type and display orientation

Device type Display orientation Page layout plan

Phone Portrait

Scrapbook list and details on separate pages

(considered default behavior)

Phone Landscape Scrapbook list and details on separate pages

Tablet Portrait Scrapbook list and details on separate pages

Tablet Landscape Scrapbook list and details on the same page

In most scenarios (phone portrait and landscape, tablet portrait), the app’s behavior should be exactly

as we’ve seen already: the scrapbook list and details pages are separate pages. But, when running the

app on a tablet in landscape mode, we want to use the extra horizontal screen real estate to show both

the scrapbook list and the details of a selected scrapbook page.

You may recall how to target multiple screen resolutions and orientations from chapter 3, but it’s been

a while so let’s review quickly. To target landscape and portrait orientations, you change the file name of

your page and JavaScript files. You change the file name from {page-name}.xml to {page-

name}.land.xml or {page-name}.port.xml. To target a tablet the file name changes from {page-

name}.xml to {page-name}.minWH600.xml, where the additional .minWH600 convention means the

page should be loaded when a device’s minimum width (minW) or height (H) is at least 600 device-

independent pixels (dp).

NOTE We discussed device-independent pixels in chapter 3, which is a way of describing mobile device

screen sizes in a standard way. Check out chapter 3 for more details, or read this blog post:

http://blog.fluidui.com/designing-for-mobile-101-pixels-points-and-resolutions/.

 Branstein / The NativeScript Book 264

NOTE A minimum width or height of 600 dpi isn’t a number we decided to randomly use, but is a

generally-accepted number of device-independent pixels for tablets.

Using these conventions, let’s create a landscape-oriented, tablet-specific page for the scrapbook-

page.xml by adding the XML and Javascript files scrapbook-page.land.minWH600.xml and

scrapbook-page.land.minWH600.js to the views folder of the app. After making this addition, and

adding a temporary label to the newly-created page, our app shows different pages when viewed on a

phone and tablet (figure 11.9).

Figure 11.9 The scrapbook-page page on a phone and landscape tablet.

Testing tablet-specific apps on the Android emulator and iOS simulator

You may have wondered how you can test tablet-specific pages on the Android emulator and iOS

simulator. Running and testing a NativeScript on a tablet emulator/simulator is no different than doing

it on a phone-sized device. It may sound a bit over-simplified, but the only thing you need to do is run

the tablet-sized device running instead of a phone-sized device.

Truthfully, running and testing on the tablet emulator/simulator isn’t difficult, but it can be confusing

the first time you do it. Don’t worry, we’ll walk you through it on the stock Android emulator,

GenyMotion (the third-party Android emulator), and the iOS Simulator.

To setup a tablet in the stock Android emulator, open the Android Virtual Device (AVD) Manager and

create a new device (note your AVD Manager may look slightly different).

 Branstein / The NativeScript Book 265

To add a tablet, create a new virtual device, and select a tablet-sized device in the Android Virtual Device (AVD)

Manager.

When creating the virtual device, the Device drop down will have a variety of devices to choose from.

Select a tablet from the list. If you’re not sure which ones are tablet, you could search online, or pick

our go-to option: the Nexus 10. It doesn’t really matter which tablet you choose, just make sure it’s a

tablet. After adding the tablet, start the emulator and run your app via the NativeScript CLI: tns run

android.

Configuring a tablet emulator on GenyMotion is like setting one up on the stock Android emulator. Open

GenyMotion and press the large Add button, and select the Custom tablet option from the Device model

drop down.

In GenyMotion, add a Custom Tablet device to install and run a tablet emulator.

 Branstein / The NativeScript Book 266

Select one of the Custom Tablet virtual devices in the Available virtual devices list and complete the

wizard to create your virtual device. After the tablet is added, start it up, and run your app via the CLI:

tns run android.

The iOS simulator is a bit easier to configure a tablet. Start by running the Simulator app. When the

simulator app launches, it will automatically start an iPhone simulator (or the last running device you

used). To switch to a tablet-sized simulator, go to the Hardware menu, select Device, then iOS, and

finally a tablet-sized device. Any of the iPads will do.

The iOS Simulator allows you to switch devices from the Hardware – Device – iOS menu.

After a new device is selected, the currently-running simulator will shut down and the device you

selected will be loaded. To run your app on the device, use the CLI: tns run ios.

Now that we have a separate page for landscape-oriented tablets, let’s get down to business. The

tablet version will be like the existing app, and will be composed of three features:

9. A list of scrapbook pages. The left side of the screen will display a list of scrapbook pages,

reusing the functionality we’ve defined already in the scrapbook-page.xml file.

10. A detailed view of a single scrapbook page. When a user selects a page from the list, the right

side of the screen will display the detailed view of the selected page, reusing the UI and business

logic from the scrapbokUpdate-page.xml file. From the detailed view the user will be able to save

changes made to the scrapbook page.

11. Adding a new scrapbook page. Users will be able to add new pages to the list of scrapbook pages

and update the page’s content from the detailed view on the right.

 Branstein / The NativeScript Book 267

CREATING THE BASE XML CODE STRUCTURE

Let’s start by creating the structure for the new page, leaving a space for the list and details areas. Listing

11.11 outlines the base structure of the tablet-specific scrapbook page.

Listing 11.11 Initial structure of the scrapbook-page.land.minWH600.xml page

<Page loaded="onLoaded">

 <Page.actionBar>

 <ActionBar title="Pet Scrapbook" >

 <ActionItem tap="onAddTap" ios.position="right"

 text="Add" android.position="actionBar"/>

 </ActionBar>

 </Page.actionBar>

 <GridLayout rows="*" columns="*,2*">

 #A

 <GridLayout rows="*" columns="*" col="1">

 <StackLayout> #B

 #B

 </StackLayout> #B

 </GridLayout>

 </GridLayout>

</Page>

#A The scrapbook list code goes here

#B The detailed view code goes here

The tablet-specific page starts with a similar action bar you saw earlier in this chapter, displaying the

app’s name and an action item that adds a new scrapbook page to the list of pages. The remainder of the

page is organized with a single grid layout with a single row and two columns. Although you don’t see the

actual XML code for the list and detailed view in listing 11.11, we’ve called out the location of each. The

scrapbook list will be placed in the first column, and consume one-third of the screen’s width. The detailed

view of a selected page will take up the right two-thirds of the screen and be wrapped inside of an

additional grid layout and stack layout.

BUILDING OUT THE JAVASCRIPT CODE BASE

To wrap up the base structure of the page, let’s lay down the JavaScript code to go along with the XML

code we just added by starting with the page’s loaded event (listing 11.12).

Listing 11.12 Handling the loaded event in the scrapbook-page.land.minWH600.js file

var observable = require("data/observable");

var observableArray = require("data/observable-array");

var fileSystemService = require("~/data/fileSystemService");

var page;

exports.onLoaded = function(args) {

 page = args.object;

 var scrapbook = new observable.fromObject({ // #A

 pages: new observableArray.ObservableArray(), // #A

 selectedPage: null // #A

 }); // #A

 var pages = fileSystemService.fileSystemService.getPages(); // #B

 Branstein / The NativeScript Book 268

 if (pages.length !== 0) { // #B

 pages.forEach(function (item) { // #B

 var model = scrapbookPageModel(); // #B

 model.id = item.id; // #B

 model.title = item.title; // #B

 model.gender = item.gender; // #B

 model.birthDate = item.birthDate; // #B

 model.image = item.image; // #B

 model.lat = item.lat; // #B

 model.long = item.long; // #B

 scrapbook.pages.push(model); // #B

 }); // #B

 } // #B

 page.bindingContext = scrapbook; // #C

};

function scrapbookPageModel(id) {

 var model = new observable.Observable();

 model.id = id;

 model.genders = ["Female", "Male", "Other"];

 model.calcAge = function (birthDate) {

 var now = Date.now();

 var diff = Math.abs(now - birthDate) / 1000 / 31536000;

 return diff.toFixed(1);

 };

 return model;

}

#A The definition of the observable is new for the tablet-specific page, tracking the collection of pages and the

selected page

#B This is almost identical, except the scrapbook pages are pushed to the scrapbook.pages observable array

#C Because the page contains both a list of all pages and the selected page, the binding context is set to the

over-arching observable

#D No changes here

You’ll recognize a bit of this code from earlier in this chapter, but it’s been changed a little. When the

tablet-specific page loads, we load the existing pages from the file system and establish a binding context

for the page (this is assigned to an observable named scrapbook). The scrapbook observable will be used

to track two things: an observable array of scrapbook pages (the pages property) and the selected

scrapbook page (the selectedPage property).

NOTE Planning ahead, we’ll be using the pages and selectedPage properties in data binding. When

we’ve added the scrapbook list and detailed view UI elements to the page, we’ll bind to these properties.

 Branstein / The NativeScript Book 269

With the loaded event added, let’s turn our attention to the action bar item that adds a new scrapbook

page. Now that we have an observable array (pages), we’ll add a function to handle the tap event and

add a scrapbook page to the pages observable array (listing 11.13).

Listing 11.13 Adding a scrapbook page when the action bar action item is tapped

exports.onAddTap = function(args) {

 var page = args.object;

 var scrapbook = page.bindingContext;

 scrapbook.pages.push(new scrapbookPageModel(scrapbook.pages.length));

};

Once again, we’re not going to explain this listing in detail. At a high-level, the onAddTap() function is

called when a user taps the “Add” action bar item, which adds a new scrapbook page to the pages

observable array.

That’s the last of the base code structure for the tablet-specific page. It feels a little anti-climactic,

because there’s not a lot to show for our work, but stick with us. Laying down this structure upfront will

make it easy for us to add the XML markup from the list and details page.

11.2.2 Adding a list to the tablet-specific page

Earlier in this chapter, you updated the UI for the scrapbook list. Let’s extract a portion of the existing

XML and add it to the tablet-specific page. Listing 11.14 shows the tablet-specific page updated with this

XML.

Listing 11.14 Adding the scrapbook list custom UI control to the tablet-specific page

<Page loaded="onLoaded">

 <Page.actionBar>

 <ActionBar title="Pet Scrapbook" >

 <ActionItem tap="onAddTap" ios.position="right"

 text="Add" android.position="actionBar"/>

 </ActionBar>

 </Page.actionBar>

 <GridLayout rows="*" columns="*,2*">

 <GridLayout rows="*" columns="*">

 <ListView class="list-group" items="{{ pages }}" itemTap="onItemTap">

 <ListView.itemTemplate>

 <StackLayout orientation="horizontal" class="list-group-item">

 <Image class="thumb img-circle" src="{{ image }}" />

 <Label class="list-group-item-text"

 text="{{ title, (title === null ||

 title === undefined ? 'New' : title + '\'s') +

 ' Scrapbook Page' }}" />

 </StackLayout>

 </ListView.itemTemplate>

 </ListView>

 </GridLayout>

 <GridLayout rows="*" columns="*" col="1">

 <StackLayout>

 Branstein / The NativeScript Book 270

 </StackLayout>

 </GridLayout>

 </GridLayout>

</Page>

These changes add the scrapbook list to the tablet-specific page, as seen in figure 11.10. Note the

empty list view on the left and the blank space on the right (reserved for the update page).

Figure 11.10 Pet Scrapbook list page shown on a tablet after adding the list view to the left

If you’ve been following along, go ahead and launch the Pet Scrapbook on a tablet. When you visit the

tablet-specific list page and tap the Add button in the action bar area, empty pages will be added to the

list in the left. Just in case you aren’t following along, you should see something like figure 11.11.

Figure 11.11 Tapping the Add button in the action bar will add a page to the list view on the left.

You’ll immediately notice that each button tap adds another page named New Scrapbook Page. Without

the update page wired up to the page’s binding context, there’s no way for you to enter in a page name.

Let’s finish the tablet-specific view by adding the update page elements.

11.2.3 Adding the update data entry elements to the tablet-specific page

In chapter 10, we created the update page, allowing us to update a scrapbook page. Listing 11.15 shows

the contents of this page.

Listing 11.15 The scrapbookUpdate-page.xml file at the end of chapter 10

<Page loaded="onLoaded">

 <Page.actionBar>

 ... #A

 Branstein / The NativeScript Book 271

 </Page.actionBar>

 <StackLayout>

 <StackLayout class="form"> #B

 ... #A

 </StackLayout> #B

 <Button class="btn btn-primary #B

 btn-rounded-sm btn-active" tap="onAddImageTap" #B

 text="Add Image" /> #B

<Button tap="onDoneTap" class="btn btn-primary #B

btn-rounded-sm btn-active" #B

text="Done" /> #B

 </StackLayout>

</Page>

#A UI code for the action page and data entry form purposely truncated for space

#B These elements will be copied to the tablet-specific page

We’ve purposefully left out some code within the action bar and the stack layout that contains the data

entry form UI, but that technically doesn’t matter. What’s important is that a subset of this page will be

copied to the tablet-specific page. Copy the data entry form stack layout (including its child elements)

and the button and place it into the tablet-specific update page. Listing 11.16 shows the tablet-specific

page after doing this.

Listing 11.16 The scrapbook-page.land.minWH600.xml file after adding the update page UI

elements

<Page loaded="onLoaded">

 <Page.actionBar>

 <ActionBar title="Pet Scrapbook" >

 <ActionItem tap="onAddTap" ios.position="right"

 text="Add" android.position="actionBar"/>

 </ActionBar>

 </Page.actionBar>

 <GridLayout rows="*" columns="*,2*">

 <GridLayout rows="*" columns="*">

 <ListView class="list-group" items="{{ pages }}" itemTap="onItemTap">

 <ListView.itemTemplate>

 <StackLayout orientation="horizontal"

 class="{{ isActive ? 'list-group-item active' :

 'list-group-item' }}">

 <Image class="thumb img-circle" src="{{ image }}" />

 <Label class="list-group-item-text"

 text="{{ title, (title === null || title === undefined ?

 'New' : title + '\'s') + ' Scrapbook Page' }}"

 style="width: 100%" />

 </StackLayout>

 </ListView.itemTemplate>

 </ListView>

 </GridLayout>

 <GridLayout rows="*" columns="*" col="1">

 <StackLayout>

 <StackLayout class="form"> #A

 <StackLayout class="input-field"> #A

 <Label class="label" text="Name:" /> #A

 <TextField class="input" text="{{ title }}" #A

 hint="Enter a name..." /> #A

 Branstein / The NativeScript Book 272

 </StackLayout> #A

 <StackLayout class="input-field"> #A

 <Label class="label" text="{{ birthDate, 'Birth date: ' + #A

 (birthDate === null ? '' : '(' + calcAge(birthDate) + #A

 ' years old)') }}" /> #A

 <TextField class="input" editable="false" #A

 text="{{ birthDate, birthDate | #A

 dateConverter(dateFormat) }}" #A

 tap="onBirthDateTap" hint="Enter a birth date..." /> #A

 </StackLayout> #A

 <StackLayout class="input-field"> #A

 <Label class="label" text="Gender:"></Label> #A

 <TextField class="input" editable="false" #A

 text="{{ gender }}" #A

 tap="onGenderTap" hint="Select a gender..." /> #A

 </StackLayout> #A

 <StackLayout class="input-field"> #A

 <Label class="label" text="Image:" /> #A

 <Image src="{{ image }}" stretch="None" /> #A

 <Label class="footnote" text="{{ (lat, long), #A

 (lat === undefined || long === undefined) ? '' : #A

 'Picture taken at ' + lat + ', ' + long }}" /> #A

 </StackLayout> #A

 </StackLayout> #A

 <Button class="btn btn-primary btn-rounded-sm btn-active" #A

 tap="onAddImageTap" text="Add Image" /> #A

 <Button class="btn btn-primary btn-rounded-sm btn-active" #A

 tap="onDoneTap" text="Done" /> #A

 </StackLayout>

 </GridLayout>

 </GridLayout>

</Page>

#A This is the code we copied from the update page

11.2.4 Adding behavior to the update page UI with JavaScript

Now that we’ve added the update-related UI elements to the tablet-specific page, all that remains is

to wire-up the data binding and tap events. At first, you may think wiring up all these components can be

done by copying the JavaScript code from the update page. Unfortunately, that's not the case (because

the update page assumes the binding context of the page is set to a single scrapbook page). We can reuse

quite a bit of the code, but there are a few items we’ll need to change. Changing these items at once

could be a bit confusing, so let’s review each item briefly, then tackle them one at a time:

▪ Step 1: Data bind the new data-entry from UI elements to the selectedPage property of the page’s

binding content.

▪ Step 2: When a page is tapped in the left-hand list view, point the selectedPage property of the

page’s binding context to tapped page.

▪ Step 3: Show modal dialogs when the birth date and gender UI elements are tapped.

▪ Step 4: Add an image when the Add Image button is tapped.

▪ Step 5: Save selected page changes to the file system.

 Branstein / The NativeScript Book 273

STEP 1: CONFIGURING DATA BINDING FOR THE UPDATE UI ELEMENTS WITH THE SELECTEDPAGE PROPERTY

Data binding the update UI elements is a little tricky, because the existing data binding expressions

assume the page’s binding context points to an observable with properties for the title, birth date, gender,

image, latitude, and longitude. But, there’s a problem: the tablet-specific page’s binding context doesn’t

have these properties (listing 11.17).

Listing 11.17 The tablet-specific page’s binding context

var scrapbook = new observable.fromObject({

 pages: new observableArray.ObservableArray(),

 selectedPage: null

});

page.bindingContext = scrapbook;

The page’s binding context has the pages property (which is bound to the list of scrapbook pages on

the left-hand side of the page) and the selectedPage property (which we intended to point to an index of

the pages property). Ideally, we’d like the update UI elements we just added to use the selectedPage

property, as shown in figure 11.12.

Figure 11.12 The tablet-specific page showing the binding context and how observables should bind to each UI

element area

As you’ll recall from chapter 8 where you learned about data binding, when the page’s binding context

is set to an observable, all UI elements within the page gain access to (or inherit) the binding context.

Because of this, the list view on the left can bind directly to the pages property: <ListView items="{{

pages }}" />. But, the update UI elements bind directly to properties like title: <TextField text="{{

title }}" />.

We’ll tell you how we’re going to solve this problem, but take a moment and think about the problem

a how you may solve it. As you think, here’s a quick tip to get you started. Continue reading after the tip

when you’re finished thinking.

 Branstein / The NativeScript Book 274

TIP The page’s binding context is inherited to all child elements, and stored in a property called

bindingContext on each element.

You may have come up with a different solution, but the way we’ll solve this problem will help you

better understand the process of data binding and the inheritance of the binding context. In the tip, you

learned that each UI element has a property named bindingContext, which is inherited from its parent

element.

Even though we’ve set the bindingContext property on the page only, there’s not a reason why we

can’t set the binding context on another control, breaking the inheritance chain. Let’s do just that by

getting a reference to the stack layout surrounding the update UI elements in code and setting its binding

context to the selectedPage observable. Listings 11.18 and 11.19 show the changes to XML and JavaScript

code used to get a reference to the surrounding stack layout mentioned above.

Listing 11.18 The update portion of the tablet-specific page with an id added to the stack layout

surrounding the data-entry UI elements

<GridLayout rows="*" columns="*" col="1">

 <StackLayout id="updateStackLayout" >

 <StackLayout class="form">

 ... #A

 </StackLayout>

 </StackLayout>

</GridLayout>

#A Additional data-entry UI elements purposefully left out.

Listing 11.19 Modified onLoaded handler for the tablet-specific page

var observable = require("data/observable");

var observableArray = require("data/observable-array");

var fileSystemService = require("~/data/fileSystemService");

var viewModule = require("ui/core/view"); #A

var page;

var updateStackLayout; #A

exports.onLoaded = function(args) {

 page = args.object;

 updateStackLayout = #A

 viewModule.getViewById(page, "updateStackLayout"); #A

 var scrapbook = new observable.fromObject({

 pages: new observableArray.ObservableArray(),

 selectedPage: null

 });

 var pages = fileSystemService.fileSystemService.getPages();

 if (pages.length !== 0) {

 pages.forEach(function (item) {

 var model = new scrapbookPageModel();

 model.id = item.id;

 Branstein / The NativeScript Book 275

 model.title = item.title;

 model.gender = item.gender;

 model.birthDate = item.birthDate;

 model.image = item.image;

 model.lat = item.lat;

 model.long = item.long;

 scrapbook.pages.push(model);

 });

 }

 page.bindingContext = scrapbook;

};

#A A reference to the stack layout is obtained via the view module and saved for later use

We’ve made minor changes to the XML and JavaScript code of the tablet-specific page by adding an

id field to the stack layout and obtaining a reference to the element with the view module.

Something you probably noticed is that we didn’t set the binding context of the stack layout to the

selected page. But, why? Look at the selectedPage property in the onLoaded function: selectedPage:

null. It’s null. If we were to use the selectedPage property right away, we’d be setting the stack layout’s

binding context to null, which effectively does nothing. But, this begs the question, "When should we set

stack layout’s binding context to the selectedPage property?"

Before we move on to the answer, we’re calling step 1 complete. Even though we didn’t actually bind

the data-entry by setting the stack layout’s binding context to the selectedPage property, we setup the

structure to allow us to do this later. Let’s move on.

STEP 2: HANDLE THE LIST VIEW ITEMTAP EVENT AND SET THE SELECTED PAGE

Before we left the last section, the selectedPage property was null and we asked the question, “When

should we set stack layout’s binding context to the selectedPage property?". The answer is to set the

binding context when the selectedPage property isn’t null. But, when isn’t the selectedPage property null?

When a scrapbook page is selected (by tapping an item in the list view on the left of the page).

The series of questions and answers may be a bit long, so let’s be pointed: when a list item is tapped,

the selectedPage property is set to an index within the pages observable array. After the selected page is

set, the stack layout’s binding context should be updated.

Let’s look at this in the code. The list view already has an itemTap event declared in XML: <ListView

class="list-group" items="{{ pages }}" itemTap="onItemTap">. Listing 11.20 shows the

handling of the event.

Listing 11.20 Handling the itemTap event of the list view on the tablet-specific page

exports.onItemTap = function(args) {

 var scrapbook = page.bindingContext;

 scrapbook.set("selectedPage", scrapbook.pages.getItem(args.index));

 updateStackLayout.bindingContext = scrapbook.selectedPage;

};

When a list view item is tapped, the index of the tapped item is passed to the event handler through

the index property. Using this property (and a reference to the page’s binding context observable), the

 Branstein / The NativeScript Book 276

selectedPage property is set to the tapped list item. Then, the magic happens: we set the stack layout’s

binding context to the selected page, overriding the inherited binding context.

With this change, the tablet-specific page comes to life. If you’re following along, go ahead and run

the updated app in your emulator. Tapping the Add action bar button adds new pages, and tapping a page

in the list view loads the appropriate page on the right. Figure 11.13 shows Pkitty’s page selected on top

and Riven’s page selected on the bottom.

Figure 11.13 The tablet-specific page UI reacting to tapping on different list view items, Pkitty’s page selected on top

and Riven’s page selected on bottom.

The tablet page is coming together; let’s move on to the next step.

STEP 3: USING MODALS TO SELECT VALUES FOR THE BIRTH DATE AND GENDER FIELDS

We’ve already added modals to the Pet Scrapbook earlier in this chapter, and the good news is that the

code to implement modals on this page is almost identical. Let’s not delay and add handle the tap event

on the birth date and gender text fields by copying the code from the details page and adding it to this

page. Listing 11.21 shows the code with a few changes that we’ll explain.

Listing 11.21 Birth date and gender text field tap event handlers to select values on the tablet-

specific page

exports.onBirthDateTap = function(args) {

 var modalPageModule = "views/selectDate-page";

 var context =

 { birthDate: updateStackLayout.bindingContext.birthDate }; #A

 var fullscreen = true;

 page.showModal(modalPageModule, context,

 function closeCallback(birthDate) {

 updateStackLayout.bindingContext.set("birthDate", birthDate); #A

 }, fullscreen);

};

exports.onGenderTap = function(args) {

 var modalPageModule = "views/selectGender-page";

 Branstein / The NativeScript Book 277

 var context = { gender: updateStackLayout.bindingContext.gender }; #A

 var fullscreen = true;

 page.showModal(modalPageModule, context, function closeCallback(gender) {

 updateStackLayout.bindingContext.set("gender", gender); #A

 }, fullscreen);

};

#A References to page.bindingContext were changed to updateStackLayout.bindingContext

This code looks remarkably like the code from the details page. In fact, the only thing that changed

was the binding context used throughout. The detail page’s code used a reference to

page.bindingContext, because the UI elements on the detail page could use their page’s binding

context. As you’ll recall from earlier in this chapter, the data-entry UI elements were configured to use a

different binding context (the selectedPage property). Because of this, any references to

page.bindingContext had to change to updateStackLayout.bindingContext.

With these changes, the birth date and gender text fields now open model dialogs to select their

values.

STEP 4: HANDLE THE TAP EVENT FOR THE ADD IMAGE BUTTON

The next step is to handle the tap event of the Add Image button. Like the birth date and gender fields,

we can copy the code we created previously. Let’s grab that code, modify it slightly, and add it to the

tablet-specific page (listing 11.22).

Listing 11.22 Add image tap event handler on the tablet-specific page

var camera = require("nativescript-camera");

var geolocation = require("nativescript-geolocation");

var image = require("image-source");

exports.onAddImageTap = function (args) {

 var page = args.object;

 var scrapbookPage = updateStackLayout.bindingContext; //#A

 geolocation.isEnabled().then(function (enabled) {

 if (!enabled) {

 geolocation.enableLocationRequest();

 }

 });

 camera.requestPermissions();

 camera.takePicture({ width: 100, height: 100, keepAspectRatio: true })

 .then(function (picture) {

 image.fromAsset(picture).then(function (imageSource) {

 scrapbookPage.set("image", imageSource);

 });

 });

 geolocation.getCurrentLocation().then(function (location) {

 scrapbookPage.set("lat", location.latitude);

 scrapbookPage.set("long", location.longitude);

 });

};

 Branstein / The NativeScript Book 278

#A Reference to page.bindingContext was changed to updateStackLayout.bindingContext

Once again, the only change needed is to update the reference to page.bindingContext to

updateStackLayout.bindingContext.

Let’s move on to the final step: writing changes to the selected page to the file system.

STEP 5: SAVING SELECTED PAGE CHANGES TO THE FILE SYSTEM

Back in chapter 9, you learned how to use the file system module to save scrapbook pages to the file

system. This allowed the Pet Scrapbook to have a permanent record of scrapbook pages that persisted

after the app was closed and re-opened. In chapter 10 we added the update page of the Pet Scrapbook,

which allowed users to edit the details of a scrapbook page. After editing the details, users could press

the Done button, saving the changes to the file system and navigating back to the list of scrapbook pages.

We’d like to reuse code written previously to save changes, so let’s revisit the Done button’s tap event

handler in listing 11.23.

Listing 11.23 The scrapbook update page handling the Done button’s tap event

var frame = require("ui/frame");

exports.onDoneTap = function(args) {

 var scrapbookPage = page.bindingContext;

 fileSystemService.fileSystemService.savePage(scrapbookPage);

 frame.topmost().navigate({

 moduleName: "views/scrapbook-page",

 clearHistory: true,

 transition: {

 name: "slideRight"

 }

 });

};

Looking back at the tap event handler on the update page, it saved the updates to the file system by

passing the observable referenced by the page’s binding context (scrapbookPage) to the file system

service’s savePage() function. We can reuse this functionality on the tablet-specific page by passing the

selectedPage observable to the file system service. Our only problem is there’s not a Done button on the

tablet-specific page. Let’s start by adding a button, then finish by adding code like listing 11.23 to the

tablet-specific page. Listing 11.24 updates the UI by adding a Done button next to the Add Image button

and wrapping a stack layout around both elements.

Listing 11.24 Done button and stack layout updates to the tablet-specific page

<StackLayout orientation="horizontal">

 <Button class="btn btn-primary btn-rounded-sm btn-active"

 tap="onAddImageTap" text="Add Image" />

 <Button class="btn btn-primary btn-rounded-sm btn-active"

 tap="onDoneTap" text="Done" />

</StackLayout>

 Branstein / The NativeScript Book 279

Next, let’s add the Done button tap event handler code to the tablet-specific JavaScript file (listing

11.25).

Listing 11.25 The scrapbook update page handling the Done button’s tap event

exports.onDoneTap = function(args) {

 var selectedPage = updateStackLayout.bindingContext;

 fileSystemService.fileSystemService.savePage(selectedPage);

};

After adding this code, the tablet-specific page has the same features as the default pages. Great

work!

NOTE We copied and pasted a lot of code in this section, and it feels wasteful. If you’re familiar with

the DRY principle (don’t repeat yourself), this section probably made you feel dirty. You may have even

been thinking, “there’s got to be a better way to share code between the default and tablet-specific

pages.” Well, there is, and appendix D is dedicated to doing just this: creating re-usable, custom UI

controls. Custom UI controls are an advanced topic, and are a bit beyond the scope of this book, but

we felt we had to share it with you. So, if you’re adventurous or looking for a challenge, check out

appendix D.

11.3 Refining the tablet-specific user experience

The tablet-specific page of the Pet Scrapbook is finished, right? Yes, if you’re comparing the tablet version

to the non-tablet version. Side-by-side both pages have the same features: add a new scrapbook page,

update the details of the page, select the birth date and gender suing modals, and save the details to the

file system. But, we think there’s some room for improvement.

Take a minute and use the tablet-specific version and see if you feel there’s room for improvement. If

you find anything, build a list, and compare it to the list we’ll share with you.

When we sat down and used the Pet Scrapbook for a few minutes, several questions were raised in

our mind:

▪ When a page is selected from the list, how do we know which page was selected?

▪ When a page is added, wouldn’t it be nice if the app selected that page automatically?

▪ When the page loads for the first time, why do blank data-entry UI elements show on the right?

▪ Why do the data-entry UI elements show after the Done button is pressed?

Our list of questions is short, appear to be quickly remedied, and are high-value (meaning they can

significantly improve the app). You may have noticed some of the same short-comings of the app (plus

one or two more), so let’s work through correcting each of these items together.

11.3.1 Visual feedback for the selected page

This first issue we’ll address is giving users visual feedback when a page is selected from the list of

scrapbook pages. Ideally, it would be nice to highlight a list item when it’s been tapped. When a different

item is tapped, it would be highlighted. Because styling a list view item differently when selected is a

 Branstein / The NativeScript Book 280

common occurrence, the core theme package has a special CSS class combination (list-group-item active)

that can be applied to a selected list item. Let’s use this style and add a conditional styling rule to the list

view item template by using a data binding expression (listing 11.26).

Listing 11.26 The scrapbook update page handling the Done button’s tap event

<ListView class="list-group" items="{{ pages }}" itemTap="onItemTap">

 <ListView.itemTemplate>

 <StackLayout orientation="horizontal"

 class="{{ isActive ? 'list-group-item active' : #A

 'list-group-item' }}"> #A

 <Image class="thumb img-circle" src="{{ image }}" />

 <Label class="list-group-item-text"

 text="{{ title, (title === null || title === undefined ?

 'New' : title + '\'s') + ' Scrapbook Page' }}"

 style="width: 100%" />

 </StackLayout>

 </ListView.itemTemplate>

</ListView>

#A When the isActive property is true, style the list item with the active class

By adding a data binding expression to the class property of the stack layout, we’re able to control

when a list item is styled with the list-group-item class (not selected) or the list-group-item and active

classes (selected). But, for this to work, the isActive property needs added to the scrapbook page

observable. Listing 11.27 shows the change made to the scrapbookPageModel() function, which

returns the observable.

Listing 11.27 The scrapbookPageModel() function updated to include the isActive property

function scrapbookPageModel(id) {

 var model = new observable.Observable();

 model.id = id;

 model.genders = ["Female", "Male", "Other"];

 model.isActive = false; // #A

 model.calcAge = function (birthDate) {

 var now = Date.now();

 var diff = Math.abs(now - birthDate) / 1000 / 31536000;

 return diff.toFixed(1);

 };

 return model;

}

#A By default, a scrapbook page shouldn’t be active (or selected)

When a new page is created, it isn’t selected or active, so the isActive property is set to false.

Now that we’ve added the isActive property, the only thing left to do it set it to true when a list item

is selected, and reset its value to false when another item is selected. Let’s update the itemTap event

handler’s code to do just this (listing 11.28).

Listing 11.28 Updated itemTap event handler on the tablet-specific page, incorporating the isActive

observable property

 Branstein / The NativeScript Book 281

function resetActivePage() {

 var scrapbook = page.bindingContext;

 scrapbook.pages.forEach(function (item) { #A

 item.set("isActive", false); #A

 }); #A

 scrapbook.selectedPage.set("isActive", true); #B

}

exports.onItemTap = function(args) {

 var scrapbook = page.bindingContext;

 scrapbook.set("selectedPage", scrapbook.pages.getItem(args.index));

 updateStackLayout.bindingContext = scrapbook.selectedPage;

 resetActivePage();

};

#A Reset all pages isActive property to not be selected

#B Update the selected list item to show as selected

The resetActivePage() function handles all of the heavy lifting. First, we loop through the page’s

observable array and reset all the isActive properties to be false (not selected). Then, when the

selectedPage property and the data-entry form’s binding context are set to the selected page, we set the

isActive property of the selected page to true. Let’s check it out in the emulator (figure 11.14).

Figure 11.14 The tablet-specific version of the Pet Scrapbook showing which page is selected

Wow! That change made a huge difference: now it’s perfectly clear which page is selected. Let’s move

on to the next issue.

11.3.2 Auto-selecting a page when it’s added

The next issue is a natural extension of the previous. Now that we know when a page is selected, wouldn’t

it make sense to auto-select a page as soon as it’s added? After all, when you add a page, the first thing

you’ll want to do it update its information, so why not save the user the extra tap and auto-select the

newly-added page?

Let’s update the action bar Add button’s tap event handler, as shown in listing 11.29.

 Branstein / The NativeScript Book 282

Listing 11.29 Updated itemTap event handler on the tablet-specific page, incorporating the isActive

observable property

exports.onAddTap = function(args) {

 var scrapbook = page.bindingContext;

 scrapbook.pages.push(new scrapbookPageModel(scrapbook.pages.length));

 scrapbook.set("selectedPage",

 scrapbook.pages.getItem(scrapbook.pages.length - 1));

 resetActivePage();

};

The changes to the Add button’s tap event handler are straightforward. First, we set the selected page

to the last index of the page’s observable array (because the new scrapbook page is always added to the

end of the array). Then, we reset the active page using the function we defined previously. It’s that simple.

Now, when we add a new page, it’s automatically selected. Figure 11.15 shows the newly added page

selected automatically.

Figure 11.15 The tablet-specific page auto-selecting a scrapbook page when it’s added, saving users an extra tap.

11.3.3 Hiding the data-entry UI elements when the page loads

Although this issue may not seem important, it’s a not-so-secret pet peeve of ours.

TIP Don’t show UI elements, especially data-entry elements, when they’re not applicable.

Yeah, believe it or not, we run across UIs that display data-entry elements, even when they’re not

applicable. We feel this is nothing more than egregious, so let’s fix the app by hiding the data entry UI

elements until a scrapbook page is selected.

TIP To control the visibility of a UI element, use a data-binding expression in the visibility property of

a UI element. Setting the visibility property to collapsed hides the element (and its child elements). To

show the UI element, set the visibility property to visible.

 Branstein / The NativeScript Book 283

Listing 11.30 shows the update to the grid layout on the right of the tablet-specific page that keeps

the grid layout and its children hidden until the selectedPage property is no longer set to null.

Listing 11.30 Controlling the visibility of the grid layout and it’s child UI elements with the visibility

property and a data-binding expression.

<GridLayout rows="*" columns="*" col="1"

 visibility="{{ selectedPage === null ? 'collapsed' : 'visible' }}">

 <StackLayout id="updateStackLayout">

 ... #A

 </StackLayout>

</GridLayout>

#A Child elements purposefully left out to save space

Again, the changes to correct this are straightforward: the data-binding expression for the visibility

property inspects the selectedPage property. When its value is null, the grid layout and its child UI

elements are hidden, and when a page is selected, the grid layout is shown. Figure 11.16 shows the

updated UI before and after selecting a scrapbook page from the list view.

Figure 11.16 The tablet-specific page hiding the data-entry UI elements before selecting a list item (top), and afterwards

(bottom) showing the data-entry UI elements

11.3.4 Hiding the data-entry UI elements after pressing Done

Now that we have a mechanism for controlling when the data-entry UI elements are displayed, we can be

more judicious. The current functionality of the page can be a bit confusing. In fact, when you press the

Done button, nothing happens. Technically, the scrapbook page is saved to the file system, but you receive

no feedback from the UI.

Let’s fix that and hide the data-entry UI after pressing the Done button. Listing 11.31 shows the

updated tap event handler.

 Branstein / The NativeScript Book 284

Listing 11.31 Hiding the data-entry UI elements after pressing the Done button

function resetActivePage() {

 var scrapbook = page.bindingContext;

 scrapbook.pages.forEach(function (item) {

 item.set("isActive", false);

 });

 if (scrapbook.selectedPage != null) {

 scrapbook.selectedPage.set("isActive", true);

 }

}

exports.onDoneTap = function(args) {

 var scrapbook = page.bindingContext;

 fileSystemService.fileSystemService

 .savePage(scrapbook.selectedPage); // #A

 scrapbook.set("selectedPage", null); // #B

 resetActivePage(); // #B

};

#A Save the changes to the file system

#B Clear the selectedPage observable and ensure none of the pages in the list view is selected

Compared to the other issues we’ve addressed, there’s a little more work to do here, but it’s still

relatively limited. First, we’ve updated the resetActivePage() function to check for a selected page

value of null. Then, when the Done button is tapped, we set the selected page to null and call the

resetActivePage() function to adjust the list view’s selected item.

And with that final change, we’re going to call the Pet Scrapbook complete. The most recent changes

were minor but make the app much more user-friendly, demonstrating the value of our attention to detail.

PLAY A final version of the code from this chapter can be found in the Playground at

https://play.nativescript.org/?template=play-js&id=557Zvo&v=41.

11.4 Summary

In this chapter, you learned the following:

▪ Modal pages are defined with XML, JavaScript, and CSS (just like regular pages), but you use the

showModal() function and a close callback function to open and close a modal.

▪ To send data from a modal dialog to the previous page, you pass it back as an argument of the

close callback function.

▪ UI elements inherit their binding context from their parent UI control, but can be overridden by

setting their bindingContext property directly.

▪ UI element visibility can be toggled by setting the visibility property of an element to either

collapsed or visible.

 Branstein / The NativeScript Book 285

11.5 Exercises

In the final section of this chapter, we shared a list of four issues we felt the Pet Scrapbook app had. We

also asked you to write down a list of issues you identified. Using the lists developed, complete the

following exercises.

▪ The resetActivePage() function is inefficient because it loops through all of the items of the

page’s observable array to reset each item's isActive property to false. Assuming that only one

scrapbook page can have its isActive property set to true, developer a more efficient solution.

▪ The title and done button of the update page feel better as an action bar title and action button.

Move them into an action bar at the top of the update page.

▪ Challenge: Using the list of issues you developed, correct one of the issues you identified.

11.6 Solutions

A more efficient resetActivePage() function is included in listing 11.32. In summary, the more

efficient solution keeps track of the previously-selected page in a global variable.

Listing 11.32 More efficient resetActivePage() function

function resetActivePage() {

 var scrapbook = page.bindingContext;

 previouslySelectedPage.set("isActive", false); #A

 if (scrapbook.selectedPage != null) {

 scrapbook.selectedPage.set("isActive", true);

 }

}

#A Assumes that prior to setting the selectedPage, other code blocks keep track of

the previously selected page

To move the update page title and done button to an action bar, remove the title and done button

elements and add the UI elements from listing 11.33 to the top of the scrapbookUpdate-page.xml file.

Listing 11.33 Action bar code for a title and done button

<Page.actionBar>

 <ActionBar title="{{ title, (title === null || title === undefined || title === ''

? 'New Page' : title + ' Page') }}" >

 <ActionItem tap="onDoneTap" ios.position="right"

 text="Done" android.position="actionBar"/>

 </ActionBar>

</Page.actionBar>

 Branstein / The NativeScript Book 286

12
Deploying an Android app

This chapter covers

▪ How to prepare your app to be deployed

▪ How to deploy your app to the Google Play store

In the last several chapters, we’ve continued to refine the Pet Scrapbook app while teaching you about

supporting multiple screen resolutions, using modals, and styling apps with themes. Now that we’ve

finished adding features to the Pet Scrapbook, what’s next? Writing an app solely for the app’s sake isn’t

our motivation: we aspire to share our work. And the best way to share is by publishing the Pet Scrapbook

to the app stores.

Over the next three chapters, you’ll learn how to finalize apps and prepare them for the app stores.

In this chapter, we’ll cover how to get ready for the Google Play store by creating app icons, a launch

screen, and configuring the app for various devices. In the following two chapters, we’ll cover the same

learning points, but focus on Apple’s App Store.

Let’s get started!

12.1 Customizing Android apps with the App_Resources folder

Let’s take a brief journey back to chapter 3, where you learned about the structure of a NativeScript app.

You’ll recall the App_Resources folder is a special folder holding platform-specific customizations. When

we first introduced this to you, we said we’d come back to it later. That time has come.

Customizations (like app icons and launch screens) are done by updating files in the App_Resources

folder. There’s a lot going on under this folder, so let’s take a closer look (figure 12.1).

 Branstein / The NativeScript Book 287

Figure 12.1 The App_Resources/Android folder contains files and folders that can be updated to configure Android-

specific app settings.

Figure 12.1 shows are two subfolders beneath the App_Resources folder: Android and iOS. These two

folders house platform-specific files for Android and iOS respectively. In this chapter, we’ll be focusing on

the Android folder. If you’re interested in learning about the iOS folder, check out the next two chapters.

12.1.1 App_Resources/Android contents

The first series of folders you’ll notice follow the naming convention of drawable-*. The drawable folders

are used by Android to store different resolutions of all the image resources in the Pet Scrapbook so they

look correct on devices that support different resolutions and DPI. If you recall, we used these in chapter

7 to add image resources for the Tekmo app. To help jog your memory, table 12.1 details how each

drawable folder maps to various device DPIs.

Table 12.1 Approximate Android device DPI densities and the corresponding App_Resources folder

Size App_Resources Folder Approximate DPI

low drawable-ldpi ~120 DPI

medium drawable-mdpi ~160

high drawable-hdpi ~240

extra-high drawable-xhdpi ~320

extra-extra-high drawable-xxhdpi ~480

extra-extra-extra-high drawable-xxxhdpi ~640

 Branstein / The NativeScript Book 288

The next two folders are the values folders. These folders contain XML files that define the default look

and feel of Android themes (figure 12.2).

Figure 12.2 The default contents of the values folders in the Pet Scrapbook app.

There are two folders because they apply to different versions of Android. You don’t need to know the

details beyond the fact that devices running an Android version of 5.0 and higher refer to the values-v21

folder, and older versions refer to the values folder.

NOTE The v21 folder extension refers to the Android API and SDK version 21. Android devices running

Android v5.0 use API version 21. This may sound confusing, but as a NativeScript developer, you really

don’t need to know the details.

Looking close at figure 12.2, the colors.xml and styles.xml files define default colors and styles for

Android apps. You’re welcome to open the files and inspect them further: it’s nice to know the files are

there, but we won’t be customizing them. We’ll come back to the values folders a little later in this chapter,

so don’t forget about them.

NOTE If you want to learn more about the themes, colors, and styles for an Android app, you can visit

https://developer.android.com/guide/topics/ui/themes.html.

The last files in the App_Resources/Android folder are the app.gradle and AndroidManifest.xml files.

The app.gradle file is used to define custom build settings for an Android app, which is used by the

NativeScript CLI to create transform your app’s source code into a complied Android app. We won’t be

going into detail about the app.gradle file, but if you want to learn more, go to

https://developer.android.com/studio/build/build-variants.html. The AndroidManifest.xml file is like a

configuration file for the Pet Scrapbook app, and is the most significant of the files in the Android folder.

We’ll be using this file extensively to make modifications to the Pet Scrapbook.

Let’s take a closer look at the AndroidManifest.xml file.

 Branstein / The NativeScript Book 289

12.2 AndroidManifest.xml customizations

Every NativeScript app that is being deployed to Android must have an application manifest file named

AndroidManifest.xml. This file is generated when you target android as a platform using the tns

platform add android CLI command.

DEFINITION The AndroidManifest.xml file is an Android system file that provides essential information

about your app to the Android runtime such as app version, supported screen configurations, app icon,

and more.

The AndroidManifest.xml file is where we will configure the app icons for the Pet Scrapbook app. This

file must exist in the root of the App_Resources/Android folder, as shown in figure 12.3.

Figure 12.3 The location of the AndroidManifest.xml file within the Pet Scrapbook project (and all NativeScript projects).

WARNING Don’t move or rename the AndroidManifest.xml file. If you do, your app won’t run. The

AndroidManifest.xml file is officially defined by the Android API and not by NativeScript (NativeScript

simply provides a default for you). Visit

https://developer.android.com/guide/topics/manifest/manifest-intro.html for full documentation of the

AndroidManifest.xml file.

 Branstein / The NativeScript Book 290

An item defined in the AndroidManifest.xml file is the app icon for the Pet Scrapbook app. Let’s look

at how we can create an app icon and update it for the Pet Scrapbook app.

12.2.1 App icons

All apps need an app icon or they can’t run properly on a device. But that’s not all an app icon is. App

icons are the first thing that a potential user sees about your app. The app icon should convey meaning

and be easily identifiable or memorable so that users can quickly find your app. Chances are good that

you recognize at least one of the app icons in figure 12.4. These app icons are quickly distinguishable

because they are using company logos.

TIP Getting your app icon right is incredibly important. It should be simple and representative of your

app. Most of all, it should be artistically attractive. If you’re not artistic, that’s ok. Pair up with a friend.

Figure 12.4 Some common app icons that you may recognize.

When we scaffolded the Pet Scrapbook with the tns create PetScrapbook CLI command, a default

app icon was created (figure 12.5).

 Branstein / The NativeScript Book 291

Figure 12.5 The default NativeScript app icon, created by the CLI.

You might be thinking that the NativeScript CLI creates a single app icon, but that’s not the case. If

you recall from chapter 7, NativeScript apps can run on a variety of devices, each with varying screen

dimensions and resolutions. To accommodate the various devices, the CLI creates multiple app icons.

When the icons are created, they are stored in the various drawable folders inside the

App_Resources/Android folder, as shown in figure 12.6.

Figure 12.6 The default app icons of the Pet Scrapbook are named icon.png and stored inside the various drawable

folders.

 Branstein / The NativeScript Book 292

The default app icons created by the CLI are named icon.png and located in the drawable-* folders.

DEFINITION The drawable folders are specific system folders defined by the Android API that is used

to store bitmap graphic files or XML. In this book, we will be discussing bitmap graphics. If you would

like to learn more about XML files in the drawable folder, please visit the official Android documentation

at https://developer.android.com/guide/topics/resources/drawable-resource.html.

This isn’t the first time we’ve talked about the drawable-* folders. Back in chapter 7, you learned how

you could use the drawable-* folders to hold DPI-specific image resources. Do you see the parallel

between images, app icons, and the drawable-* folders?

NOTE Wait for it…click! There it was. App icons are images, and Android uses the drawable-* folders

to display DPI-specific images on various devices.

Now that you know app icons are treated just like image resources, let’s take a closer look at the

drawable-* folders.

APP ICON DPIS

Form our earlier discussions of the drawable-* folders in chapter 7, you might recall that these folders

follow a specific naming convention. The folders start with the drawable- naming convention, followed by

a DPI code (corresponding to a device’s DPI). There’s a lot of DPIs to remember from chapter 7, so we’ve

included table 12.2 for reference. It shows a full listing of the different drawable folders and device DPIs

supported by Android.

TIP A listing of all the available drawable folders can be found at

https://developer.android.com/guide/topics/resources/providing-

resources.html#AlternativeResources.

Table 12.2 Drawable folder names and corresponding device DPIs.

Folder name Device DPI

drawable-nodpi all devices

drawable-ldpi 120

drawable-mdpi 160

drawable-hdpi 240

drawable-xdpi 320

drawable-xxdpi 480

drawable-xxxdpi 640

 Branstein / The NativeScript Book 293

Wow, that’s a lot of DPIs! When creating an app, you need to create seven different app icons—one

for each drawable-* folder! If you moonlight as a graphic artist, then creating the various app icons won’t

be a problem for you, but if you’re like us, you’ll need some help. Luckily there are a few shortcuts. Let’s

explore these shortcuts and create an app icon for the Pet Scrapbook.

12.2.2 Customizing app icons

Before we get started, we’ll need an app icon for the Pet Scrapbook. We’re not artistically inclined, so we

partnered with an artistic friend, Batman.

NOTE Yeah, his name is Batman. Because he’s awesome. Special thanks to you, Batman!

With Batman’s help, we developed an app icon for the Pet Scrapbook (figure 12.7).

Figure 12.7 The Pet Scrapbook app icon, as created by our friend, Batman.

Let’s download a copy of the app icon before me we continue. You can get a copy at

https://github.com/mikebranstein/TheNativeScriptBook/blob/master/PetScrapBook.png.

APP ICON SHORTCUTS

To customize the app icon of the Pet Scrapbook, remember that we need to create seven versions of the

image shown in figure 12.7. We could open our favorite image editing program, change the image size,

and re-save each resized image, but that is a ton of work. Instead, we’re going to take a shortcut and use

a tool to build app icons. our NativeScript image builder at http://nsimage.brosteins.com.

TIP To save time, use an automatic app icon resizer or an app icon builder. One great tool is the built-

in app icon generator. If you’ve installed the NativeScript CLI it’s accessible via the tns resources

generate icons command. Learn more about this tool at

https://docs.nativescript.org/tooling/docs-cli/project/configuration/resources/resources-generate-

icons. If you don’t have the CLI installed, you can use our tool at http://nsimage.brosteins.com. We’ll

be using our tool so we can demonstrate how to create app icons without the CLI.

Figure 12.8 shows our NativeScript image builder tool that you can use for generating app icons.

 Branstein / The NativeScript Book 294

Figure 12.8 The NativeScript image builder tool showing how to upload an icon file to get back scaled icon resources to

use in the Pet Scrapbook.

You may recall using our image builder tool back in chapter 7, where we uploaded image resources

and resized them for various screen resolutions.

NOTE Our free tool also allows you to upload regular image resources that you would like to generate

scaled resources for your NativeScript app.

The image builder tool also helps you resize app icons. Let’s upload the Pet Scrapbook app icon. Use

the Choose File button, locate the Pet Scrapbook icon, and upload it with the Upload App Icon button.

WARNING It’s important to note that app icons should be square and a minimum of 1024 x 1024

pixels. Our image builder warns and won’t let you upload images of smaller dimensions that aren’t

square, so you don’t have to worry about uploading an invalid file. Regardless, it’s nice to know ahead

of time.

After uploading the Pet Scrapbook app icon, you receive a zip file with images that are scaled for the

different device DPIs.

NOTE Our image builder created app icons for both Android and iOS. Android app icons are in the

Android folder. iOS app icons are in the iOS folder.

Figure 12.9 shows the contents of the Android folder.

 Branstein / The NativeScript Book 295

Figure 12.9 The contents of the icons.zip file that our image builder tool returns after you upload the Pet Scrapbook

icon file.

The zip file that you get back from the NativeScript Image Builder contains icon.png files inside the

various drawable-* folders. Extract the icon files and update the Pet Scrapbook project by placing them

in the appropriate folder.

That’s it!

When the Pet Scrapbook is installed on an Android device, the appropriately sized app icon will be

used and displayed. Figure 12.10 shows the resulting Pet Scrapbook icon installed on an Android device.

Figure 12.10 The Pet Scrapbook installed to an Android device, showing the updated app icon.

TIP When you change files and folders within the App_Resources folder, you’ll need to re-build your

app using the tns build android CLI command. If you notice that your app icon doesn’t change,

 Branstein / The NativeScript Book 296

make sure you run tns build android. If your app icon doesn’t change after running tns build

android, try running tns platform remove android, then tns run android.

Now that we’ve seen the Pet Scrapbook icon updated, let’s take a moment to understand how

NativeScript knows to use the icon.png files in the drawable-* folders.

12.2.3 Understanding app icons and the AndroidManifest.xml file

Earlier in this chapter, you learned that the AndroidManifest.xml file was used to configure Android apps,

including settings such as the app icons. Let’s look at the file closer, focusing on the application XML node.

Listing 12.1 The AndroidManifest.xml application node showing the app icon setting

 <application

 android:name="com.tns.NativeScriptApplication"

 android:allowBackup="true"

 android:icon="@drawable/icon" // #A

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <activity

 android:name="com.tns.NativeScriptActivity"

 android:label="@string/title_activity_kimera"

 android:configChanges="keyboardHidden|orientation|screenSize">

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 <activity android:name="com.tns.ErrorReportActivity"/>

 </application>

#A The name of the app icon in the drawable folders, telling the Android app which image file to use as an app

icon

Listing 12.1 shows the application node of the AndroidManifest.xml file. Don’t worry. You don’t need

to know the details of this file, but it’s nice to know what’s going on behind the scenes.

TIP Even though you don’t need to know the details of the AndroidManifest.xml file (and the application

element of the file), you might be interested in learning more. For more information about the

application element, check out https://developer.android.com/guide/topics/manifest/application-

element.html.

Listing 12.1 points out the android:icon="@drawable/icon" attribute, which tells Android which

image file to use as the app icon. @drawable refers to the drawable-* folder that appropriate matches

the screen resolution of a device, and icon is the file name (without extension) of the app icon image

file.

NOTE You may be wondering why the icon image file is referenced without an extension. Because the

image is located across the various drawable-* folders, it’s treated as an image resource. When

 Branstein / The NativeScript Book 297

referencing image resources, you don’t need a file extension. If you’d like a deeper explanation, look

back at chapter 7.

NOTE If you are interested in the finer details of how Android selects the best match of a drawable,

please refer to https://developer.android.com/guide/topics/resources/providing-

resources.html#BestMatch.

Something nice about NativeScript (and using our image builder tool) is that the app icon configuration

in AndroidManifest.xml and the images downloaded from our tool are already configured with the

appropriate app icon names. Because of this, when you replace the icon.png files in the drawable-* folders,

your app icon will be updated accordingly.

ANOTHER APP ICON SHORTCUT, BUT DON’T DO IT!

Even though it’s a good practice to supply app icons for all of the various screen resolutions, you need to

supply a single app icon only.

If you have a limited amount of time, you may want to create a single app icon and place it in the

drawable-nodpi folder. When you place an app icon in the drawable-nodpi folder and leave it out of the

other drawable-* folders, Android will use the app icon from the drawable-nodpi folder.

WARNING Don’t do this. Even though it may feel like a shortcut, using a single app icon may create a

suboptimal user experience. Take the extra minute and use our image builder tool to get all of your

app icons.

Now that we’ve updated the Pet Scrapbook app icon, let’s create a launch screen.

12.3 Launch Screens

All Android apps must have launch screens (sometimes called splash screens).

DEFINITION A launch screen is a graphical UI, usually displaying an image or logo, that displays while

the app is loading.

The purpose of the launch screen in Android apps is to set the stage and introduce the app to the user.

In the world of Android, an app’s launch screen can be creative, but at the same time simple. Furthermore,

a launch screen should adhere to Google’s Material Design launch screen guidelines.

DEFINITION Google’s Material Design launch screen guidelines are a set of rules making

recommendations on Android-specific UI styles for launch screens. For more details on Google’s Material

Design launch screen guidelines, check out https://material.google.com/patterns/launch-screens.html.

In Android apps, there are two types of launch screens: placeholder UI and branded launch screens.

The two types of launch screens are similar, and you really don’t need to know the specific differences.

But, at a high-level, placeholder UIs are more simplistic, showing a minimal status bar while the app

 Branstein / The NativeScript Book 298

loads. Branded launch screens, are more complex, and give you an opportunity to highlight your app’s

brand with additional visual UI elements.

TIP If you’re having trouble deciding which launch screen to use, defer to the branded launch screen.

In our opinion, placeholder UIs are blah, a technical term for boring. Spending an extra 5 minutes to

configure a branded UI launch screen will pay off. NativeScript apps are also pre-configured to use a

branded launch screen.

The Pet Scrapbook app will use a branded launch screen, meaning that we’ll be highlighting the Pet

Scrapbook brand by displaying the Pet Scrapbook logo.

EXPLORING THE BRANDED LAUNCH

Just like app icons, the NativeScript CLI creates a default branded launch screen for apps when the app

is scaffolded using the tns create CLI command. The launch screen is configured through the

splash_screen.xml file in the App_Resources/Android/drawable-nodpi folder (figure 12.11).

Figure 12.11 The default launch screen is created by the NativeScript CLI and stored in the drawable-nodpi folder.

Now that we know where the launch screen is stored, let’s look a bit closer and customize it to include

the Pet Scrapbook logo.

12.3.1 Updating the launch screen

The default launch screen is different from other pages you’ve created in NativeScript: instead of using

NativeScript UI elements, it uses native Android components. Unfortunately, this is one spot where we

will not be able to use the NativeScript XML syntax for creating a page because when the launch screen

is being loaded by the Android runtime before the NativeScript virtual machine runs your app code.

 Branstein / The NativeScript Book 299

NOTE If you don’t know native Android UI components, don’t worry. Customizing the Android launch

screen is incredibly easy (all you need to do is replace two image files). Stick with us, and you’ll have

nothing to worry about.

Let’s start by looking at the default launch screen provided by the NativeScript CLI. Listing 12.2 shows

the splash_screen.xml file, where the launch screen is defined.

Listing 12.2 The splash_screen.xml file, which defines a NativeScript app’s launch screen

<layer-list xmlns:android="http://schemas.android.com/apk/res/android"

android:gravity="fill">

 <item>

 <bitmap android:gravity="fill" android:src="@drawable/background" /> // #A

 </item>

 <item>

 <bitmap android:gravity="center" android:src="@drawable/logo" /> // #B

 </item>

</layer-list>

#A Points to background.png, an image filling the background of the launch screen

#B Points to logo.png, the image centered on the launch screen

There’s not much going on in listing 12.2, because it’s only eight lines long, and even if you don’t know

the Android UI markup language, it’s evident that the screen is composed of two image references:

@drawable/background and @drawable/logo.

The @drawable convention is the same convention you learned about earlier in this chapter. When

an Android app loads, it looks for a drawable-* folder (depending on its screen resolution) and loads the

appropriate background.png and logo.png image files. The background.png image is expanded to fill the

background of the launch screen. The logo.png image is centered on top of the background.

If you inspect the various drawable-* folders in the App_Resources/Android folder, you’ll find

background.png and logo.png files for each resolution (figure 12.12).

 Branstein / The NativeScript Book 300

Figure 12.12 The drawable-* folders containing background.png and logo.png files, used to create a launch screen for

various screen resolutions.

Now that you know how an app’s launch screen is created in NativeScript, let’s look at the default

launch screen when an Android app loads (figure 12.3).

 Branstein / The NativeScript Book 301

Figure 12.13 The default launch screen of a NativeScript app.

You’ve probably seen this launch screen dozens of times if you’ve been following along in the book.

Let’s change it for the Pet Scrapbook.

REPLACING THE BACKGROUND.PNG TO UPDATE THE LAUNCH SCREEN

Updating the launch screen is like updating app icons: change the image resources in the drawable-*

folders. More specifically, we’ll replace the background.png and logo.png files.

Because we’ll have to create images for the various screen resolutions supported by Android, we’ll be

using our image builder website at http://nsimage.brosteins.com.

Let’s start with the background image. Choose a color that is complimentary to the Pet Scrapbook logo

and create a high-resolution (3000 x 4000 pixels) image of that color. Name the image background.png.

Alternatively, you can download an image we’ve already created from

https://github.com/mikebranstein/TheNativeScriptBook/blob/master/background.png.

TIP Background images with a solid color work best because the image is stretched to fit a device’s

screen resolution and dimensions. Sticking with a solid color not only ensures the background will look

right, but it also creates a clean-looking launch screen.

Using the image upload feature of our NativeScript image builder, selected Static Image – Android,

click the Choose File button, locate the background.png image, and press Upload App Image (figure

12.14).

 Branstein / The NativeScript Book 302

NOTE Make sure you’re using the image upload feature on the left side of our image builder site. The

left side is for static images (like the background image). The right side is for app icons.

Figure 12.14 Our NativeScript Image Builder showing how to generate scaled background.png files.

After uploading the background.png file, you will receive back a zip file with background.png files in

the appropriate drawable-* folders (just like when we uploaded the app icon). Copy these files into their

respective drawable-* folders in the Pet Scrapbook.

REPLACING THE LOGO.PNG TO UPDATE THE LAUNCH SCREEN

Next, do the same for the logo.png file:

▪ Download the Pet Scrapbook app icon from

https://github.com/mikebranstein/TheNativeScriptBook/blob/master/PetScrapBook.png.

▪ Rename the file to logo.png.

▪ Create scaled version of the image by uploading it to our image builder website.

▪ Copy the scaled logo.png files to their respective drawable-* folders in the Pet Scrapbook app.

Let’s look at the results! When the Pet Scrapbook launches, you’ll see the updated launch screen for

a split second before the main page appears (figure 12.15).

TIP Don’t forget to rebuild your app with tns build android for the updated launch screen

changes to appear.

 Branstein / The NativeScript Book 303

Figure 12.15 The updated launch screen of the Pet Scrapbook app.

Now that we’ve updated the app icons and the launch screen of the Pet Scrapbook it is time to continue

moving our way through the AndroidManifest.xml file. Our next stop is to look at how we can target

different devices with our app.

12.3.2 Targeting various screen sizes

When you hear the words, Android app, what do you think of? A phone app? A tablet app? Both?

NOTE The Android app ecosystem goes way beyond phone and tablet apps: there are smart watches

and even Android TV.

Wow! You probably weren’t considering writing apps for watches or your TV before now. But even if

you were, there’s a configuration setting that tells your Android app which screen sizes you want to

support.

We’d like the Pet Scrapbook to run on as many devices as possible, which means that it needs to

support multiple screen sizes. Let’s revisit the AndroidManifest.xml file and check out the supports-screens

element (listing 12.3).

Listing 12.3 The AndroidManifest.xml file showing the default screen sizes that the Pet Scrapbook

supports

 Branstein / The NativeScript Book 304

<supports-screens

 android:smallScreens="true" // #A

 android:normalScreens="true" // #B

 android:largeScreens="true" // #C

 android:xlargeScreens="true"/> // #D

#A Support screens about 2 – 3 inches

#B Support screens about 2 – 5 inches

#C Support screens about 4 – 7 inches

#D Support screens about 7+ inches

The supports-screens element in the AndroidManifest.xml file is used by the Android runtime to specify

the screen size compatibility for apps. Once again, you’ll find that the NativeScript CLI made your job

easy because it created default screen sizes for you: small (as described by android:smallScreens),

normal (android:normalScreens), large (android:largeScreens), and extra-large

(android:xlargeScreens).

NOTE Thanks, NativeScript CLI. You made my job easy…I think. It might be easy to turn support on

and off for a specific screen size, but what does small, normal, large, and extra-large actually mean?

Hold on. Let’s not diss the CLI, because it’s really an Android issue. Unfortunately, the screen size

properties used by Android are not descriptive. But, don’t worry: table 12.2 breaks down the Android

screen sizes and how they relate to various screen resolution DPIs.

Table 12.2 Android screen size properties and corresponding screen resolution DPIs

Screen Size ldpi (120) mdpi (160) hdpi (240) xhdpi (320)

Small QVGA (240x230) QVGA (480x640)

Normal WQVGA (240x400) HVGA (320x480) WVGA (480x800),

(600x1024)

(640x960)

Large WVGA (480x800) WVGA (480x800),

(600x1024)

Extra-large WSVGA (1024x600) WXGA

(1280x800), XGA

(1024x768),

WXGA

(1280x768)

(1536x1152),

(1920x1152),

(1920×1200)

(2048x1536), (2560x1536),

(2560×1600)

TIP If you would like to read about the supports-screen element in detail, you can review the official

Android documentation at https://developer.android.com/guide/topics/manifest/supports-screens-

element.html.

Ok. Table 12.2 is still a bit overwhelming, and truthfully, we’ll never remember these details. The good

news is you don’t need to remember them either. Luckily, NativeScript is our saving grace because it

handles the layout of each page of the Pet Scrapbook app for us; therefore, by default NativeScript has

 Branstein / The NativeScript Book 305

set all the screen size properties to true so our app should adjust appropriately on all different devices

and resolutions!

We could set one of the supported sizes to false (if we wanted). If we did set one to false, our app

would follow the Android screen compatibility guidelines found at

https://developer.android.com/guide/practices/screen-compat-mode.html.

As mentioned before, however, it’s not needed or recommended to set any of these to false because

NativeScript handles the layout and sizing of page elements intelligently for us.

12.3.3 Versioning

As you’ve been learning NativeScript and building the Pet Scrapbook app, we’ve continually added

features, refactored app code, and changed the app significantly. When we release the Pet Scrapbook app

to the Google Play store, we’ll continue to add new features. What we’re trying to say is that an app is

never finished: there’s always another version. But, you may be thinking, "How do I track the version of

an app?"

App versioning can be a complex topic, but we’ve distilled it down to the basics for you. The Google

Play store has two specific properties it looks at in the AndroidManifest.xml file. Listing 12.4 shows the

manifest element that is used to control an app’s version.

Listing 12.4 The AndroidManifest.xml file showing the versioning properties in the manifest

element

<manifest xmlns:android="http://schemas.android.com/apk/res/android" // #A

 package="__PACKAGE__"

 android:versionCode="1" // #B

 android:versionName="1.0"> // #C

#A The manifest node is the top-level element of the AndroidManifest.xml file

#B An internal version number that users never see

#C An external version string that users see in the Google Play store

An Android app’s version is composed of two numbers: an internal version code

(android:versionCode attribute) and an external version name (android:versionName attribute).

DEFINITION The version code is an integer (formatted as a string) and used as an internal app version

number.

But, what does internal mean? Because version codes are internal, they are never shown to users and

not reflected in the store. This means you can put any integer value in the version code attribute.

Because this will be the first release of the Pet Scrapbook app, we will leave this version number at

"1." The version code can be treated like a build number, so it is best practice that every time we upload

the Pet Scrapbook to the Google Play store we increment the number.

NOTE The Android system does not enforce restrictions on the version code attribute when uploading

your app to the Google Play store. But, it is recommended that you increment it on each release of

your app. Incrementing the version code with each release can help you stay organized.

 Branstein / The NativeScript Book 306

The second property that controls an app’s version is the externally visible version name.

DEFINITION The version name is a string that is shown to users when they are looking at an app in

the Google Play store.

Android doesn’t place any restrictions on the format of the version name, but most developers use a

common technique of versioning called semantic versioning.

DEFINITION Semantic versioning is a popular, and generally-accepted way of publicly-versioning

shared code libraries and packages using a MAJOR.MINOR.PATCH numbering scheme. To learn more

about semantic versioning, visit http://semver.org.

For the Pet Scrapbook, we’ll leave the default version name of 1.0 in place. We know it doesn’t conform

to the semantic versioning specification, but it’s easy to leave it alone. Rest assured, when we publish a

second version to the app store, we’ll adjust the version name accordingly to respect semantic versioning.

12.3.4 App naming

The last AndroidManifest.xml file configuration option we’ll be covering is the app’s name. You may be

thinking that an app’s name is just cosmetic, but that doesn’t mean it’s not important. Imagine if we were

to publish the Pet Scrapbook to the Google Play store and left its name to the default: PetScrapbook

(figure 12.16).

Figure 12.16 The Pet Scrapbook app installed on an Android device, showing a missing space is missing in the app’s

name.

So, the default app name is PetScrapbook, because that’s what we named the app when we created

it using the tns create PetScrapbook CLI command. Normal users may not notice the missing space

in the app’s name, but any right-minded developer would immediately notice the faux-pas. Bottom line:

don’t forget to update your app’s name.

Let’s fix this issue. App names are stored in another file named strings.xml, which is in the

App_Resources/Android/values folder.

 Branstein / The NativeScript Book 307

NOTE The strings.xml file isn’t created by the NativeScript CLI by default. Create a file named

strings.xml and place it in the App_Resources/Android/values folder.

Listing 12.5 shows the contents of the strings.xml file. Add this to your strings.xml file.

Listing 12.5 The strings.xml file showing the updated app name

<resources>

 <string name="app_name">Pet Scrapbook</string> // #A

 <string name="title_activity_kimera">Pet Scrapbook</string> // #B

</resources>

#A The string resource for the Pet Scrapbook app name

#B The string resource for the activity app name

There’s not much going on in the strings.xml file, and pragmatically, you don’t need to know the details

of how this file works. We’re not going to explain details here, so just ensure you copy the XML into the

strings.xml file.

TYING TOGETHER STRINGS.XML AND ANDROIDMANIFEST.XML

One item to note is how the AndroidManifest.xml file references the strings.xml file located in the values

folder. Let’s start by looking at the application element of the manifest file again (listing 12.6).

Listing 12.6 The updated App_Resources/AndroidManifest.xml file to reference the new app name

strings

 <application

 android:name="com.tns.NativeScriptApplication"

 android:allowBackup="true"

 android:icon="@drawable/icon"

 android:label="@string/app_name" // #A

 android:theme="@style/AppTheme">

 <activity

 android:name="com.tns.NativeScriptActivity"

 android:label="@string/title_activity_kimera" // #B

 android:configChanges="keyboardHidden|orientation|screenSize">

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 <activity android:name="com.tns.ErrorReportActivity"/>

 </application>

#A References the app_name element of string.xml

#B References the title_activity_kimera element of strings.xml, giving the app’s main activity a name

Like the @drawable naming convention we’ve seen throughout this chapter, the @string naming

convention tells Android to look for a file named strings.xml, and to look for a string named app_name

and title_activity_kimera. Together, these two string values change the name of our app from

PetScrapbook to Pet Scrapbook. Figure 12.17 shows the results.

NOTE Don’t forget to rebuild app with tns build android to see the change.

 Branstein / The NativeScript Book 308

Figure 12.17 The Pet Scrapbook app installed on an Android device, showing an updated app name (with a space).

At this point, we’ve taken care of all the missing pieces and put a lot of polish on the Pet Scrapbook

app. We’re ready for deployment to the Google Play store! Let’s look at the last steps we need to get our

app into the store.

12.4 Building your app

The process of deploying a NativeScript app to the Google Play store is the same as deploying a native

Android app to the store—signing and building a release version of the app and then uploading the app to

the store.

NOTE There are many tutorials online that can walk you through uploading your app to the store and

navigating through the app submission process, so we’re not going to cover this part. If you’re looking

for specific guidance on the app submission process, start by checking out Google’s official

documentation at https://developer.android.com/distribute/google-play/start.html.

Even though we aren’t going to walk you through the store submission process, we think it’s critical

that you understand how to build a release version of your app and then sign it.

DEFINITION A release version is a compiled version of an app, optimized for submission to the app

store, and for running on physical devices. We’re not going to go into the details of release version, but

you can learn more by reading the official Android documentation at

https://developer.android.com/studio/publish/preparing.html.

Before we get started with building a release version of the Pet Scrapbook, we’ll need to cover some

basics of app security on Android.

12.4.1 Digital signatures

As you develop and test your app on Android emulators, the emulator imposes a relatively low level of

security on you and your app. But, when you enter the realm of physical devices and the Google Play

store, the security gets cranked up. In short, every app built in release more and deployed to a physical

device must be capable of being absolutely (and without a doubt) verifiable with a digital signature.

 Branstein / The NativeScript Book 309

DEFINITION A digital signature is a mathematically-proven mechanism for showing the authenticity of

digital documents, codes, or binaries. When a digital signature is applied to something, it is often

referred to as having been digitally signed. If you would like to read further information about signing

your app for Android, you can review the official information at

https://developer.android.com/studio/publish/app-signing.html.

All Android apps installed on a physical device are digitally signed, meaning that users of the app (and

Google) have reason to believe the app is authorized for installation by Google and the app creator.

Furthermore, because apps are digitally signed, users can be assured the app has not been tampered with

on the device.

Now that you know just enough about app security to be dangerous, let’s ramp it up another level. To

digitally sign an app, you’ll need a set of keys, and these keys are stored in a special file called a keystore.

12.4.2 Generating a keystore file

To create the keystore, we’ll use a command line tool called keytool that comes with the Android SDK. If

you’ve been following along with us throughout the book, you’ll already have keytool installed by default.

Let’s start by running the following command from terminal or command prompt:

keytool -genkey -v -keystore petscrapbook.keystore -keyalg RSA -keysize

2048

 -validity 10000 -alias petscrapbook

NOTE If you’re interested in the details of the keytool command line tool, you can view the complete

documentation by running keytool -help or by reading more at

http://docs.oracle.com/javase/6/docs/technotes/tools/windows/keytool.html.

When you run the keytool command, you’ll be prompted to fill out some information such as your

name, organization, and address, as shown in figure 12.18. Even though you don’t have to fill out all the

information it's recommended to fill out at least the name and organization. By supplying a name and

organization, it helps others identify you as a valid creator of the Pet Scrapbook app.

TIP When running the keytool command, the keystore file will get created in the folder that you are

running it from. It is recommended to store the file in a safe place after creation. If you are using

source control that is public facing for your Pet Scrapbook project, be sure not to check in the keystore

file. If someone were to gain access to your keystore file, they would be able to potentially use it to

sign their applications.

 Branstein / The NativeScript Book 310

Figure 12.18 The additional information requested by the keytool to create the Pet Scrapbook keystore file used to sign

the release version of the app.

HOW MANY KEYSTORE FILES DO YOU NEED?

There’s no official rule from Google stating that you can’t use the same keystore file to digitally sign all of

your apps. But, we don’t recommend using a keystore file more than once.

TIP Create a new keystore file for each of your apps.

We recommend creating a new keystore file for each app you plan to publish to the Google Play store.

Yes, it’s more files to keep track of and secure, but it could pay off if one of your keystore files is

compromised. Imagine that a hacker breaks into your computer and steals your one and only keystore

file. With that file, they’d be able to impersonate you, updating any of your apps. The good news is that

there’s a way to essentially disable the stolen keystore file, but it also requires you to update all the apps

digitally signed with the keystore. If a separate keystore file is used for each of your apps, you still have

to do some cleanup, but that cleanup isn’t nearly as extensive.

12.4.3 Creating a release build of the Pet Scrapbook

Now that we have created the keystore file, we need to create the release build using the NativeScript

CLI. This is done by running the tns build android command with several command line parameters,

as follows:

tns build android --release --key-store-path petscrapbook.keystore

 --key-store-password myPassword --key-store-alias petscrapbook

 --key-store-alias-password myPassword

Running the tns build android command with the –-release parameter will build the Pet Scrapbook

release build. When the –-release parameter is used, the key-store parameters must also be specified.

There are several key-store related parameters, but they all related to the keystore file we just created.

NOTE When you specify key-store parameters to the tns build android command, be sure

to use the same passwords you used when creating the keystore file.

 Branstein / The NativeScript Book 311

After running the build command, the NativeScript CLI will create an APK file, which is the file that is

submitted to the Google Play store. By default, the file will be output to the

platforms/android/build/outputs/apk folder. Figure 12.19 shows the .apk file.

Figure 12.19 The location of the Pet Scrapbook APK file after building the release package of the app.

The Pet Scrapbook app is now complete and ready to be uploaded to the Google Play store! We don’t

want to stop you here, so if you’re on a roll, you’re welcome to submit your own version of the Pet

Scrapbook to the Google Play store. To get started, visit

https://developer.android.com/distribute/googleplay/start.html. And, if you do publish an app, be sure to

let us know!

12.5 Summary

In this chapter, you learned to do the following:

▪ Create an app icon for Android.

▪ Create a launch screen for Android.

▪ Target an app for different Android screen sizes.

▪ Version and name your app on Android.

 Branstein / The NativeScript Book 312

▪ Create a release APK that can be uploaded to the Google Play store.

12.6 Exercise

1. Change the name of the Pet Scrapbook icon from icon.png to petScrapbookIcon.png

2. Disable small screen support

12.7 Solutions

1. Update all the files in the drawable folders (drawable-ldpi, drawable-hdpi, etc.) from icon.png to

petScrapbookIcon.png

a. Update the AndroidManifest.xml file

i. Change android:icon="@drawable/icon" to

android:icon="@drawable/petScrapbookIcon"

b. Rebuild the solution with tns build android

2. Update the supports-screens section in the AndroidManifest.xml to

<supports-screens

 android:smallScreens="false"

 android:normalScreens="true"

 android:largeScreens="true"

 android:xlargeScreens="true"/>

 Branstein / The NativeScript Book 313

13
Preparing an iOS app for distribution

This chapter covers:

▪ Finalizing your app with a custom icon, launch images, and name

▪ Using the NativeScript CLI to create an Xcode project

In the last chapter, you learned how to get your app ready for publishing to the Google Play store. Because

NativeScript is a platform-agnostic framework, much of what you learned in the last chapter applies to

getting iOS apps ready for distribution through Apple’s App Store. In fact, the core concepts are the same:

you still need to work in the App_Resources folder to customize app icons, create a splash screen, and

rename and version your app. But, you just do it differently for iOS.

Over the next two chapters, you’ll learn how to prepare your app for publishing on Apple’s App Store.

NOTE Whoa! Two chapters for iOS deployment? Yep. But, please don’t panic. There is a lot to learn

about iOS app security and deployment. When we started developing mobile apps, we felt lost in iOS,

and these two chapters are what we wish we had.

In this chapter, we’ll focus on using features of the NativeScript platform and CLI to get your app

ready. We’ll follow-up in chapter 14 with a look at the core elements of iOS app security that you’ll need

to understand before publishing to the App Store. We’ll also cover the fundamentals of Xcode that every

NativeScript app developer should know.

DEFINITION Xcode is Apple’s IDE (or integrated development environment) used to create, build, and

submit iOS apps to the App Store.

Before we jump in, we want to address the elephant in the room. To build and publish iOS apps, you

need a Mac. And, there’s no way around it.

 Branstein / The NativeScript Book 314

TIP Just because you need a Mac to build iOS apps, it doesn’t mean you need to drop $2000 and buy

a fancy new laptop. Services like MacinCloud (http://www.macincloud.com) and vmOSX

(https://virtualmacosx.com) allow you to rent a virtual Mac, including pay-as-you-go plans. You can

also pick up a refurbished Mac mini for under $500: check out Apple’s certified refurbished website

because the deals change daily!

Now that we’ve covered how to get your hands on a Mac, let’s get the Pet Scrapbook ready for the

App Store!

13.1 Transforming your app code into an iOS app

In chapter 12, you learned about a handful of things that should be done before you publish your app to

the Android store: changing the name and versioning your app, adding app icons, adding a splash screen,

and supporting multiple device sizes. For Android, these changes were managed through several files

under the App_Resources folder. Preparing your app for the iOS platform is the same: the files and folders

within the App_Resources folder are key.

Before we take a closer look at the App_Resources folder, we think it’s important to revisit the build

process at a high-level and answer the question: how does a NativeScript app (which is just a collection

of XML, JavaScript, and CSS) turn into an iOS app?

Back in chapter 1, we briefly discussed that the NativeScript CLI is what bridges the gap between your

app code and an iOS app (figure 13.1).

Figure 13.1 The NativeScript CLI is responsible for transforming your app code (XML, JavaScript, and CSS) into an iOS

app.

 Branstein / The NativeScript Book 315

At a high level, the NativeScript CLI is responsible for transforming your app code (XML, JavaScript,

and CSS) into an iOS app. But, there’s a lot more going on behind the scenes. Don’t worry, you don’t

need to know all the details, but it can be helpful for you to learn the basics.

To transform your app code into an iOS app (.ipa file), the CLI performs several actions in two phases:

the prepare phase and the build phase (table 13.1).

Table 13.1 The two execution phases for transforming NativeScript app code into an iOS app

Phase Description

Prepare A multi-step process that copies app files to the iOS platforms folder, merges app

images into Xcode-specific resources, creates an Xcode project file, and merges

configuration files into the Xcode project

Build Builds the Xcode project created in the prepare phase, producing an iOS app (.ipa

file)

13.1.1 The prepare phase

The prepare phase is the first phase of the transformation process, and it’s responsible for creating an

Xcode project that contains your app files.

TIP The Xcode project produced by the prepare phase is stored in the platforms/ios folder of your

NativeScript app.

The prepare process is lengthy and detailed, so we’ve summarized the process into five steps:

▪ Step 1: Copy app files. The app files you’ve created (XML, JavaScript, and CSS) are copied to the

Xcode project location.

▪ Step 2: Copy App_Resources files. The files in the App_Resource folder (app icons, images, launch

screens, configuration files, and so on) are copied to the Xcode project location.

▪ Step 3: Merge images and configure launch screen. The copied images and launch screen are

merged and formatted into a format and structure that’s understood by the Xcode project.

▪ Step 4: Create Xcode project. An Xcode project file is created that references the merged images

and launch screen.

▪ Step 5: Merge configuration files. Configuration files copied from the App_Resources folder are

merged into the Xcode project.

13.1.2 The build phase

After an Xcode project is prepared, the build phase is responsible for taking the Xcode project file and

producing the iOS app (.ipa file). There’s not much to talk about in this phase, because the CLI simply

invokes a command-line executable that builds the Xcode project.

 Branstein / The NativeScript Book 316

NOTE There’s a certain beauty to the NativeScript CLI. It doesn’t do anything special once an Xcode

project is created. In fact, at that point, everything is native. Xcode builds your app.

At this point, you may be thinking, “That’s it?” Yeah. It’s rather anti-climactic. The prepare and build

phases are straightforward and rely on the underlying toolsets of Xcode to do the really hard stuff:

producing the native iOS app (.ipa file).

Before we take a deeper dive into the App_Resources folder, let’s tie this all together by looking at

how the prepare and build phases are invoked.

13.1.3 Using the CLI to prepare and build your app

Throughout the book, we’ve covered three CLI commands that tie all of this together (tns platform

add ios, tns prepare ios, and tns build ios). But it’s valuable to look at them again (briefly)

now that you understand the prepare and build phases.

NOTE Much of what we’re covering here applies to both iOS and Android platforms, so you’ll be able

to apply what you learn here if and when you build an Android app.

▪ tns platform add ios: this command starts the entire process by creating the platforms/ios

folder in your app, and populating the folder with the iOS SDK files that we’ll need to later build

the app.

▪ tns prepare ios: this command executes the prepare phase of the app transformation process.

▪ tns build ios: this command executes the build phase of the app transformation process.

It’s no coincidence there are prepare and build commands as part of the CLI. That’s because these

commands directly equate to the two phases of the transformation process: tns prepare ios executes

the prepare phase, and tns build ios executes the build phase.

TIP Don’t feel frustrated thinking that you need to type in three separate commands to build your app,

because you don’t. Each of the commands will run the previous command automatically. For example,

running tns build ios will add the platform/ios folder, prepare the Xcode project, then build your

app.

Ok. Now that you’ve learned how the CLI ties everything together, let’s dive deeper into the

App_Resources folder and find out how you can customize your app.

13.2 Finalizing your app

In the previous section, you learned how the prepare phase (and the tns prepare ios command)

works to create an Xcode project and merge custom settings and configurations from files in the

App_Resources folder.

When you create your app with the NativeScript CLI, the App_Resources/iOS folder is populated with

iOS-specific files. When modified, these files can affect the behavior of your app, allowing you to control

 Branstein / The NativeScript Book 317

the app name, iOS icon, launch image, and support device sizes. You can use the default iOS

App_Resources files without any modification and your app can be published to the App Store. But, the

default icon (right) and launch screen (left) probably won’t be sufficient (image 13.2).

Figure 13.2 The default NativeScript launch screen (left) and app icon (right).

Don’t get us wrong – the NativeScript app icon and launch screen look good, but mobile apps are

about creating a great experience for users. So, you’ll want to customize these items before publishing

your app.

TIP Don’t publish your app to the App Store without customizing the app name, icons, and launch

screen.

13.2.1 Naming your app

The first customization you should make is to change your app’s name. If you’re anything like us, when

we create our apps using the CLI, we like to keep the app name simple, like PetScrapbook: tns create

PetScrapbook. You’ll recall this creates a folder named PetScrapbook, and it also names your app

PetScrapbook (figure 13.3).

Figure 13.3 The name displayed when installed is PetScrapbook, not Pet Scrapbook.

 Branstein / The NativeScript Book 318

Notice the app name is PetScrapbook, without a space in the name. We’re a bit pedantic: the app

name should have a space in it and read Pet Scrapbook. Let’s fix the name by updating the Info.plist file,

specifically the CFBundleDisplayName value.

DEFINITION The Info.plist stands for information property list, and is a configuration file used by Xcode.

The file is a series of XML-formatted key-value pairs. The file can be edited via the Xcode UI, or with a

text editor (because it’s just XML). All iOS apps have an Info.plist file. For more information on the

Info.plist file, check out Apple’s official documentation at

https://developer.apple.com/library/content/documentation/General/Reference/InfoPlistKeyReference

/Articles/AboutInformationPropertyListFiles.html.

Locate the CFBundleDisplayName key and value in the Info.plist file, as follow:

<key>CFBundleDisplayName</key>

<string>${PRODUCT_NAME}</string>

The default value is ${PRODUCT NAME}, an iOS build-time dynamic variable. You don’t need to know

about dynamic variables, so we’re not going to explain them. Instead, replace ${PRODUCT NAME} with

Pet Scrapbook:

<key>CFBundleDisplayName</key>

<string>Pet Scrapbook</string>

Re-build and install the app your app with tns run ios. If you exit your app to the home screen,

you’ll notice the app’s name has changed. Figure 13.4 shows the app’s name without a space on the left

and with the space on the right. The change is subtle, but noticeable.

Figure 13.4 Changing the CFBundleDisplayName key in the Info.plist file changes the app name to Pet Scrapbook

(notice the space). The app on the right has a subtle space in the name.

13.2.2 Versioning

An important step of publishing an app is establishing a versioning scheme.

DEFINITION A versioning scheme is an established system for keeping track of an application’s version.

In iOS, an app’s version is tracked via two numbers: the app’s version number and build number.

Together, these two numbers uniquely describe the app version.

The versioning scheme, version number, and build number are important because every app submitted

to the App store must have a unique version.

 Branstein / The NativeScript Book 319

ESTABLISHING A VERSIONING SCHEME

Apple provides iOS developers with some general guidance around app versioning (see

https://developer.apple.com/library/content/technotes/tn2420/_index.html for this guidance).

Versioning with an app version number and an app build number can be rather confusing. Rather than

describing all the intricacies of establishing a versioning scheme, we’ll recommend a way to version your

app. But, before we jump into our recommendations, we’ll introduce you to the basics of the app’s version

number and build number.

DEFINITION The version number is a series of integers separated by dots, like 1.0.0 or 2.5.1. Each

time an app is submitted to the iTunes store, it must be assigned a unique version number, and with

each new release, it’s version number must increase. For example, if an app has been published with

version 1.3.4, the next released version must be greater than 1.3.4. 1.3.5, 1.4.0, and 2.0.0 are version

numbers greater than 1.3.4. Likewise, 1.0.0, 1.2.7, and 0.8.9 are version numbers less than 1.3.4.

Because version numbers always increase when a new version of an app is released, it’s easy to tell

when an app has been updated.

DEFINITION The build number of an app is intended to identify a build of an app, targeting a specific

version. For example, for app version 1.0.0, we may build once, creating build 1, then identify a problem

requiring us to build a second and third time. The second and third builds create build number 2 and

3. Once the app is released to the iTunes store, we begin working on version 2.0.0, which has it’s first,

second, and third builds numbered 1, 2, and 3. Like version numbers, build numbers follow the same

rules on numbering, but have one difference: a build number can be reused.

Now that you know the basics about version and build numbers, let’s get down to our

recommendations. Truth be told, Apple’s guidance on app versioning is very permissive, allowing you to

do crazy things (in our opinion) like having a version number of 7.3.1, with build numbers of 0.3.1, 7.3.1,

and 9.0.0.0. Likewise, a later app version (8.0.3 for example) may also have the same build numbers.

Being permissive isn’t bad, but it can be confusing if you’re collaborating with others, and referring to

build number 7.3.1, which could be used across several versions. It gets even more complicated because

the build number can be identical to the app’s version number!

There is a better way.

A REASONABLE VERSIONING SCHEME

You’re welcome to version your apps in any way you like, but we prefer using a strict approach to help

reduce confusion. We won’t call this a best practice, but we think it’s on its way to being considered a

reasonable practice. Try it out, and if you don’t like it, we won’t shed any tears.

12. Set the version number of your app using semantic versioning, which uses MAJOR.MINOR.PATCH

numbering scheme.

13. Start at version number 0.0.0.

14. Increment the PATCH number when you are publishing a bug fix.

 Branstein / The NativeScript Book 320

15. Increment the MINOR number when you are adding a new feature in a backwards-compatible

way for the end-user. Incrementing the MINOR number resets the PATCH number to 0.

16. Increment the MAJOR number when you are making a breaking change for the end-user.

Incrementing the MAJOR number resets the MINOR and PATCH numbers to 0.

17. Align your build number scheme to the version number scheme, but with an additional BUILD

number to the end: MAJOR.MINOR.PATCH.BUILD. For example, builds targeting version 1.0.0 will

be numbered 1.0.0.1, 1.0.0.2, and so on until version 1.0.0 is published. Once published, the

BUILD number resets to 0 with a new version.

DEFINITION Semantic versioning is a popular and generally accepted way of publicly versioning shared

code libraries and packages using a MAJOR.MINOR.PATCH numbering scheme. To learn more about

semantic versioning, visit http://semver.org.

VERSIONING NATIVESCRIPT APPS

Now that you’ve learned about app versioning on iOS, let’s see how we can change the app version by

editing the Info.plist file. To set the version and build numbers, we’ll be changing two values:

CFBundleVersion, which corresponds to the version number, and CFBundleShortVersionString, which

corresponds to the build number.

Although it’s a bit trivial at this point, let’s set the version and build number of the Pet Scrapbook to

1.0.0. Find the CFBundleVersion value and change it to 1.0.0, as follows:

<key>CFBundleVersion</key>

<string>1.0.0</string>

Then set the CFBundleShortVersionString value to 1.0.0:

<key>CFBundleShortVersionString</key>

<string>1.0.0</string>

That’s it, and we know: It’s quite anti-climactic. And, unfortunately, there’s not a great way out-of-

the-box way to visualize the app version. But don’t worry, we’ll see how setting the app version in the

Info.plist file flows to Xcode later in this chapter. Stay tuned.

TIP Even though NativeScript doesn’t provide a built-in mechanism for getting an app’s version number,

the nativescript-appversion plugin does. Check it out in the npm package at

https://www.npmjs.com/package/nativescript-appversion.

13.2.3 Adding icons

In chapter 7, you learned how to add images to your app, and specifically how to address images on a

variety of devices with different DPIs. You might be wondering how this relates to an app’s icon.

TIP App icons are images, and you use the same tools and strategies you used when creating images

to create an app icon.

Because app icons are just images, you already know everything you’ll need to resize and format the

icons. But, you’re still missing some of the details. Let’s explore app icons in the App_Resources folder.

 Branstein / The NativeScript Book 321

ICON LOCATION

App icons are stored in the App_Resources/iOS/Assets.xcassets/AppIcon.appiconset folder, and are

named icon-{size}.png. Wow! There’s a lot going on in that folder structure, so we’ll break it down for

you, starting with the Assets.xcassets folder, which holds various asset catalogs.

DEFINITION An asset catalog is a way of organizing app images, icons images, or launch screen images

so they can be used across a variety of screen dimensions and DPIs.

Creating asset catalogs is straightforward, but you don’t need to know the details because the CLI

provisions an asset catalog for your icons and launch screen automatically. Let’s get back to the

Assets.xcassets folder. Now that you know about asset catalogs in a general sense, the name of the folder

should make more sense: it contains assets for Xcode (often abbreviated as xc).

One of the folders within Assets.xcassets is the AppIcon.appiconset folder. This folder contains the

definition of an asset catalog for app icons (figure 13.5).

Figure 13.5 The AppIcon.appiconset folder, defining the asset catalog for app icons.

 Branstein / The NativeScript Book 322

There are two items of interest within the AppIcon.appiconset folder: the Contents.json file and 17

images. The Contents.json file defines the various icon images, their purpose, and size in pixels. We’re

not going to delve into the exact contents of the file, instead what you need to know is that by replacing

the images in this folder, you can affect an app’s icon.

NOTE Yow! There are 17 images you need to replace to change the app’s icon? Yep. But don’t be

worried, there are tools out there to help you to resize an icon into the various sized images (like the

NativeScript Image Builder at http://nsimage.brosteins.com).

Now that you know about app icons, let’s get to work and change the icon for the Pet Scrapbook. We’ll

be using our NativeScript Image Builder tool at http://nsimage.brosteins.com because we’ve discussed it

in detail back in chapter 7, and it makes resizing app icons simple. We’ll begin by downloading the Pet

Scrapbook icon from our Github repository:

https://github.com/mikebranstein/TheNativeScriptBook/blob/master/Chapter13/PetScrapBook.png

(figure 13.6).

TIP Don’t forget that you can also use the built-in NativeScript CLI command tns resources

generate icons to build app icons for your app. Learn more about this tool at

https://docs.nativescript.org/tooling/docs-cli/project/configuration/resources/resources-generate-

icons.

Figure 13.6 The Pet Scrapbook app icon.

TIP Make sure the app icon you create is the right shape and size. App icons must be square images,

and 1024 x 1024 pixels.

CHANGING THE ICON

Using the NativeScript Image Builder tool, upload the PetScrapBook.png app icon, as shown in figure

13.7.

 Branstein / The NativeScript Book 323

Figure 13.7 Uploading the Pet Scrapbook app icon to our image builder tool.

After a few seconds, the image builder tool will download a zip file containing the resized app icons.

Open the zip file and navigate into the iOS folder, where you’ll find 24 app icons (figure 13.8).

Figure 13-8 The iOS folder in the image builder zip file contains 24 app icons. Note the image is clipped to save room.

Copy the files with a name starting with icon into the AppIcon.appiconset folder, overwriting the

existing files.

NOTE You may have noticed that the image builder tool creates more than 17 images: it creates 24

images. Two of the images (iTunesArtwork.png and iTuneArtwork@2x.png) can be used when

 Branstein / The NativeScript Book 324

submitting your app to the iTunes store. This still leaves 5 more icons. You don’t need these images

technically, but the image builder tool creates 3 images for each icon size. It doesn’t hurt to copy the

extras into your project, because they’ll be ignored.

Let’s check out the new app icon (figure 13.9). Run tns platform remove ios, then tns run

ios to use the new app icon.

NOTE Remember, when you remove a platform using the tns platform remove command, it

deletes only the platform-specific app files from the platforms folder, not the customizations you made

to the App_Resources folder (like the new app icon).

Figure 13.9 The Pet Scrapbook app after replacing the default app icons with the images created with our image

builder.

WARNING Xcode caches app icon asset catalogs, so you need to remove the Xcode project created by

NativeScript by running tns platform remove ios. Once removed, running tns run ios will

rebuild the Xcode project with the updated app icon.

TIP It’s always good to f you’re still feeling a bit new to

13.2.4 Launch screens

Now that you know about asset catalogs and how to change the app icon, we’ll use a similar approach to

create launch screens.

DEFINITION Launch screens allow you to display a splash screen while your app loads.

Launch screens are a great way to brand your app and create a better user experience because it

provides feedback to users, letting them know your app is loading. Even though launch screens can look

like anything, it’s standard to show your app’s icon centered on the screen.

TIP Don’t spend a lot of time and effort creating a launch screen. Launch screens should reflect your

brand. Use your app’s icon, centered on a solid background. Simple is better.

LAUNCH SCREENS VERSUS LAUNCH IMAGES

You may have heard about something called a launch image. Launch images and screens accomplish the

same thing: displaying an initial splash screen as an app loads, but they do this in two different ways.

 Branstein / The NativeScript Book 325

DEFINITION Launch images is a legacy method used in iOS 7 to display a splash screen by creating

custom-sized images for the various screen sizes and device orientations.

DEFINITION Launch screens are the new method for displaying a splash screen. Supported in iOS 8,

9, & 10, this method allows you to create a single storyboard that will adjust to all screen sizes and

device orientations automatically.

Because NativeScript supports iOS 7 and higher, it allows you to create both launch images and

screens. But, we don’t think this means you should spend the time to support both.

TIP If your app absolutely must target iOS 7, you’ll have to create a launch image. Otherwise, skip iOS

7 and skip creating launch images. Focus on supporting iOS 8 and above, and create a single launch

screen.

We feel strongly that you should not make launch images to support iOS 7, and here’s why:

▪ It’s tedious. How many device sizes and orientations are you going to support? Now create a custom

image for each. No thanks.

▪ As of February, 2017, 79% of iOS devices run iOS 10, 16% iOS 9, and a whopping 5% run iOS 8

or earlier. That means iOS 7 is somewhere inside that 5%. See

https://developer.apple.com/support/app-store for the stats.

With that said, we’re not going to cover how to create launch images in this book. But, we don’t want

to abandon you if you’re part of that 5% that needs to support iOS 7. If you need to support launch

images, the official NativeScript documentation is a great resource. Check out

https://docs.nativescript.org/publishing/creating-launch-screens-ios#customizing-launch-images.

EXPLORING LAUNCH SCREENS

The default NativeScript app template contains a pre-built launch screen storyboard and asset catalogs

that store and organize images used on the storyboard.

DEFINITION A launch screen storyboard is an XML-formatted document describing the UI layout for

the launch screen. In many ways, the storyboard is like a NativeScript page, except it contains iOS-

specific XML markup to describe native iOS UI elements.

The launch screen storyboard is in the App_Resources/iOS folder, and is named

LaunchScreen.storyboard.

TIP If you’re curious, take a closer look at the launch screen storyboard. But you don’t need to know

anything of the specifics. NativeScript makes launch screens easy.

EXPLORING THE DEFAULT LAUNCH SCREEN STORYBOARD

The default launch screen storyboard included in the NativeScript app template creates a launch screen

layout with the intent of doing the following two things:

 Branstein / The NativeScript Book 326

1. To create a simple, lightweight UI with no moving elements that can be displayed quickly, per

Apple’s human interface guidelines at https://developer.apple.com/ios/human-interface-

guidelines/graphics/launch-screen.

2. Display a solid background image stretched to fill the device’s screen with a second image centered

on top.

Now that you know a little more about the launch screen storyboard, let’s look at how the two images

(background and centered foreground) are organized inside of the Assets.xcassets folder

LAUNCH SCREEN BACKGROUND IMAGE

The LaunchScreen.AspectFill.imageset folder organizes images used as the background image of the

storyboard (figure 13.10).

Figure 13.10 The LaunchScreen.AspectFill.imageset folder organized images used for the background image of launch

screens.

You’ll notice two launch screen image files and a Contents.json file. The images are just a solid color

image. When displayed in various devices, this image will be stretched to fill the entire screen. The

Contents.json file in this folder is like the one we looked at earlier for app icons: it describes the images

contained in this folder. The internal workings of the file aren’t important, so we won’t cover it.

WARNING If you’re customizing the launch screen background image, be aware that the image is

stretched to fit a variety of screen sizes and dimensions. Because this is an image, you can make it

more complex-looking with gradients, multiple colors, and so on. But we don’t recommend it. Keep it

a simple, solid color, and it will scale to every device.

LAUNCH SCREEN FOREGROUND IMAGE

The LaunchScreen.Center.imageset folder organizes images used as the centered, foreground image on

the storyboard (figure 13.11).

Figure 13.11 The LaunchScreen.Center.imageset folder organizes images used for the centered, foreground image of

a launch screen.

 Branstein / The NativeScript Book 327

The contents of this folder are almost identical to the background image’s folder. There’s nothing

special going on in here, so all you really need to know is that whatever images you place in here will be

used as the foreground image of an app’s splash screen.

CUSTOMIZING THE LAUNCH SCREEN

Customizing the launch screen is straightforward: replace the images in the

LaunchScreen.AspectFille.imageset and LaunchScreen.Center.imageset folders. Yeah, that’s it. Let’s

update the Pet Scrapbook by changing the centered image to be the Pet Scrapbook app icon.

Looking in the LaunchScreen.Center.imageset folder, we need to provide two image files: an image

file named LaunchScreen-Center and a 2x version of the same image. Again, we’ll use the NativeScript

Image Builder at http://nsimage.brosteins.com create the various images (figure 13.12).

Figure 13.12 Reusing the Pet Scrapbook icon as the center image and uploading it to our image builder site.

Upload the Pet Scrapbook app icon we used earlier in this chapter to the image builder, using the iOS

static image option. The image builder will return a zip file containing images re-sized to 1x, 2x, and 3x

sizes. Rename the images to match the LaunchScreen-Center file naming convention and copy the 1x and

2x images to the LaunchScreen.Center.imageset folder.

With that change, remove the ios platform with tns platform remove ios, and run your app with

tns run ios. You should now see the updated launch screen when the Pet Scrapbook starts (figure

13.13).

TIP The iOS simulator often caches the launch screen even after a rebuild and reinstallation. Restart

the simulator to clear the cache.

 Branstein / The NativeScript Book 328

Figure 13.13 The updated launch screen for the Pet Scrapbook.

ADVANCED LAUNCH SCREEN CUSTOMIZATION

If you’re feeling limited by the launch screen storyboard included in the default NativeScript app template,

you have option. The storyboard can be customized by changing the UI elements in the

LaunchScreen.storyboard file. We’re not going to cover this in this book, but we think it’s important

enough to briefly mention it. The sky’s the limit here, but be sure to keep it simple and follow Apple’s

guidance at https://developer.apple.com/ios/human-interface-guidelines/graphics/launch-screen.

13.2.5 Supporting device orientations

The last point when preparing your app for the iTunes store is to establish the device orientations your

app supports. You may recall from chapter 3 that it’s possible to create pages that specifically target

portrait or landscape mode by using a file-naming convention (remember .port and .land). Even though

this is possible, it’s a lot of work to create two different page layouts for every page of your app.

TIP To save yourself some time, decide whether you’ll support portrait, landscape, or both view early

in your app development process. And don’t worry that it may seem you’re cutting corners. Some of

the most popular apps restrict you to an orientation (see Twitter and Facebook as examples).

 Branstein / The NativeScript Book 329

CONFIGURING SUPPORTED ORIENTATIONS

To configure the device orientations your app supports, find the UISupportedInterfaceOrientations and

UISupportedInterfaceOrientations~ipad keys in the Info.plist file. The values of these two keys are an

XML-formatted array of possible screen orientations (listing 13.1).

Listing 13.1 Device orientation settings in the Info.plist file

<key>UISupportedInterfaceOrientations</key> //#A

<array> //#A

 <string>UIInterfaceOrientationPortrait</string> //#A

 <string>UIInterfaceOrientationLandscapeLeft</string> //#A

 <string>UIInterfaceOrientationLandscapeRight</string> //#A

</array> //#A

<key>UISupportedInterfaceOrientations~ipad</key> //#B

<array> //#B

 <string>UIInterfaceOrientationPortrait</string> //#B

 <string>UIInterfaceOrientationPortraitUpsideDown</string> //#B

 <string>UIInterfaceOrientationLandscapeLeft</string> //#B

 <string>UIInterfaceOrientationLandscapeRight</string> //#B

</array> //#B

#A This key applies to iPhones

#B The ~ipad key applies to iPads

To add or remove support for a specific screen orientation on an iPhone, add or remove a value array

string from the UISupportedInterfaceOrientations key. To affect supported device orientations on an iPad,

add or remove items entries from the UISupportedInterfaceOrientations~ipad key.

If you’ll recall from previous chapters, we created both phone and tablet views of the Pet Scrapbook.

But, after some testing, the iPhone works best in portrait, and iPad in landscape. Let’s make these changes

by removing several of the options. Listing 13.2 shows the changes.

Listing 13.2 Pet Scrapbook Info.plist file supporting portrait on phones and landscape on tablets

<key>UISupportedInterfaceOrientations</key>

<array>

 <string>UIInterfaceOrientationPortrait</string>

</array>

<key>UISupportedInterfaceOrientations~ipad</key>

<array>

 <string>UIInterfaceOrientationLandscapeLeft</string>

 <string>UIInterfaceOrientationLandscapeRight</string>

</array>

TIP When supporting landscape view, we recommend including UIInterfaceOrientationLandscapeLeft

and UIInterfaceOrientationLandscapeRight. It’s not right or wrong to support one or the other, but

we’ve met some people that are very particular in the way they hold their iPads when in landscape

orientation. Left-handed people tend to hold their iPad so the Home button is on the left, nearest their

left hand, and the opposite is true of righties.

That’s it! You’re finished and ready to get your app into the App Store. Moving to the App Store is a

big step, especially if you’re not familiar with the process (and it is a process). Don’t worry though, we’ve

been in your shoes before, and we’ll guide you through everything you’ll need to know in the next chapter.

 Branstein / The NativeScript Book 330

13.3 Summary

In this chapter, you learned:

▪ How to use configuration files in the App_Resources folder to customize an app’s icons and launch

screen.

▪ How the NativeScript CLI uses a two-phase process to create an Xcode project.

▪ Launch screens (not launch images) are the preferred way of creating a launch screens for your

iOS app because a single launch screen can be used across various devices.

▪ How to configure the screen orientations your app supports by modifying the

UISupportedInterfaceOrientations and UISupportedInterfaceOrientations~ipad keys in the

Info.plist file.

13.4 Exercises

Using what you learned in this chapter, do the following:

1. Create a new NativeScript app with an app id of org.nativescript.{random name}.

2. Create an app icon image and scale it to the various file sizes to support deployment to the App

Store.

13.5 Solutions

1. Use the CLI to create the new project: tns create sampleapp. NativeScript will automatically

set the app id to org.nativescript.sampleapp.

2. To create an app icon image for various device form factors:

a. Create a PNG image that is 1024 x 1024 pixels.

b. Using http://nsimage.brosteins.com, upload the image to the app icon area.

c. Open the .zip file produces by our site and inspect the files in the iOS folder: they

should be named and sized appropriately for iPhone and iPad devices required by the

App Store.

 Branstein / The NativeScript Book 331

14
iOS security and building your app with

Xcode

This chapter covers:

▪ How to use app IDs, certificates, registered devices, to create provisioning profiles for apps

▪ Using Xcode to build and archive NativeScript apps

In the last chapter, you learned how to get your app ready for the App Store by using the NativeScript

framework and CLI. Because support for configuring an app’s icons, launch screens, and support for multi-

device screen orientation is built into NativeScript, you don’t need to use the native iOS tools (like Xcode)

to get your app ready. Even though we didn’t need to use Xcode to get your app ready, we believe it’s

important to learn the fundamentals of iOS app security and Xcode.

Admittedly, a lot of tutorials online are focused on app security with Xcode, but none of them were

made for the beginning iOS app developer who is focused on building apps with NativeScript. Until now,

you’ve learned the NativeScript way of doing things, but getting your app into the App Store requires

some knowledge and background in Apple’s way of doing things.

So, if you’re new to mobile app development on iOS, this chapter is for you. In this chapter, you’ll

learn what an Apple ID and developer account are, then learn the essentials of iOS app security: teams,

app IDs, certificates, registered devices, and provisioning profiles. After you’ve built a solid foundation,

we’ll introduce you to Xcode, where you’ll learn exactly what you need to know to take a NativeScript app

from the CLI to App Store upload.

Let’s get to it!

14.1 Building your app

In the last chapter, you learned how to configure and customize your NativeScript iOS app by modifying

files within the App_Resources folder. Now, let’s look at how the NativeScript CLI uses this information to

transform your app into a native iOS app using Xcode.

 Branstein / The NativeScript Book 332

DEFINITION Xcode is Apple’s IDE (or integrated development environment) used to create, build,

archive, and submit iOS apps to the App Store.

NOTE Throughout this chapter we discuss the App Store, where you can purchase and download iOS

apps for your iOS device. When we say publishing to the app store, we’re also referring to something

called iTunes Connect, a website dedicated to managing your app store submissions. We’ll talk about

both the app store and iTunes Connect later, but be aware of the difference and our shortened form of

App Store that means both app store via iTunes Connect.

Until now, you haven’t needed to run Xcode to create and test your app in a simulator. In fact, if you

don’t want to publish your app to the App Store or install it on a physical device, you needn’t go any

further. We’ll see you in the next chapter!

NOTE You need to use Xcode if you want to install your app on a physical device or publish it to the

App Store only. If you’re creating your app to run in your simulator just for fun, there’s no need to

explore Xcode.

Ok. We’ll assume you’re still with us because you’re ready to build your app in Xcode, or you’re

genuinely interested. Either way, we’re glad you’re still here!

NOTE Building, archiving, publishing? What’s the difference? In this chapter, we’ll discuss building,

archiving, and publishing iOS apps. From afar, these three concepts are related, but happen in a distinct

order. Building (or compiling) an app happens first, turning the raw code into a compiled binary.

Archiving happens second, which bundles the compiled binaries into a package that can be installed on

a physical device or published to the App Store. Publishing happens third, and is an optional upload (or

submission) of an archived app to the App Store.

DO YOU REALLY NEED XCODE?

Before we jump into Xcode, let’s clear something up. You might be thinking, “Why do I need Xcode when

the NativeScript CLI has gotten me this far? My app runs on a simulator already. Why can’t it run on a

physical device?”

We applaud your logic and sensibility.

Actually, you don’t need to use the Xcode GUI to build an iOS app: the NativeScript CLI can build your

app and publish it to the App Store. But, we think it’s easier to use Xcode, so we’re going to be walking

you through that route.

NOTE We think it’s easier to use Xcode to build and publish your app because errors or warnings are

more prevalent, and the GUI feels more user-friendly to us (once you learn your way around). We also

think we’d be doing you a disservice if we didn’t teach you how to get your app ready for the App Store

with the Xcode GUI.

If you’re interested in how to use the NativeScript CLI to publish your app, check out the official

NativeScript documentation at https://docs.nativescript.org/publishing/publishing-ios-apps.

 Branstein / The NativeScript Book 333

In the next several sections, we’ll explore how to use Xcode to build and publish your apps, but before

we can get there, we need to cover some basics of Apple’s app security model. At first, you may think

we’re going too deep, but if you’ve never published an iOS app, this is essential knowledge. Stick with us.

14.1.1 Exploring iOS app security

As you develop and test your app on the iOS simulator, Apple imposes a relatively low level of security

on you and your app. But, when you enter the realm of physical devices and the App Store, the security

gets cranked up. In short, every app deployed to a physical device must be capable of being absolutely

(and without a doubt) verifiable with a digital signature.

DEFINITION A digital signature is a mathematically-proven mechanism for showing the authenticity of

digital documents, codes, or binaries. When a digital signature is applied to something, it is often

referred to as having been digitally signed.

All iOS apps installed on a physical device are digitally signed, meaning that users of the app (and

Apple) have reason to believe the app is authorized for installation by Apple and the app creator.

Furthermore, because apps are digitally signed, users can be assured the app has not been tampered with

on the device.

Let’s get back to the question we posed earlier in this chapter, “Why do we need Xcode?”. Aside from

using Xcode to build your app, you also need Xcode to manage Apple’s digital signature process for your

apps. We won’t lie to you: it’s confusing, but we’ll guide you through the confusion.

IOS APP SECURITY COMPONENTS

You need to become familiar with the following five iOS app security components:

3. Apple Developer Account associated with an Apple ID

4. App identifiers

5. Certificates

6. Registered devices

7. Provisioning profiles

WARNING At the surface, these components may seem simple, but there’s a lot to explore and learn.

In fact, there are entire books written on topics related to certificates alone. We are going to cover only

the basics of these components, so we strongly encourage you to read Apple’s official documentation

before going any further:

https://developer.apple.com/library/content/documentation/IDEs/Conceptual/AppDistributionGuide/M

aintainingCertificates/MaintainingCertificates.html.

APPLE DEVELOPER ACCOUNT ASSOCIATED WITH AN APPLE ID

Just about every service you use online requires that you have an account to log in and access special

privileges. Apple is no different. You’ll need an Apple developer account that is linked to an Apple ID to

install apps on to an iOS device and submit apps to the App Store.

 Branstein / The NativeScript Book 334

DEFINITION An Apple ID is an Apple-specific account used to log in to all Apple services, like iTunes,

the Developer Member Center, the Apple Store, and so on. You can register for an Apple ID by going

to https://www.apple.com. When you register, you’ll need to provide an email address and a password.

After the Apple ID is created, you’ll refer to the Apple ID by the email address you used during

registration.

DEFINITION An Apple developer account is an extension of your Apple ID that gives you the permission

to install apps onto an Apple device and submit an app to the App Store. To create a developer account,

go to Apple’s developer member center at https://developer.apple.com/membercenter and login with

your Apple ID.

There are two types of Apple developer accounts: a free account and a paid account. With a free

developer account, you’re able to install iOS apps on to devices through a process known as sideloading.

DEFINITION Sideloading is the process of using Xcode to install an iOS app directly to a physical device,

without downloading it from the App Store.

To publish an app through the App Store, you’ll need a paid developer account. Paid developer accounts

cost $99 a year. But wait. Don’t let the $99 fee scare you away. Everything you’ll see in this chapter can

be done with the free Apple developer account.

NOTE Apple has a program called the iOS Developer University Program, that allows universities

teaching iOS development to allow students to enroll; however, if you wish to publish an app to the

App Store, you must have a paid developer account. No discounts are offered currently. For more

information on the iOS Developer University Program, see

https://developer.apple.com/support/university/.

TIP We’re not going to walk through the details of creating a developer account and Apple ID, but 9 to

5 Mac has a good step-by-step article on how to register: https://9to5mac.com/2016/03/27/how-to-

create-free-apple-developer-account-sideload-apps/.

APP IDENTIFIERS

Back in chapter 3, you learned about the structure of your app’s package.json file. Within the package.json

file, is an id field, which specifies a unique identifier for your app. This unique identifier is referred to as

an app’s identifier (or id for short), and is formatted in reverse domain name notation.

NOTE You may recall the app Mike created for his sons, called My Robot, which had an app id of

com.brosteins.myrobot. The Pet Scrapbook’s app id is com.brosteins.petscrapbook.

Every iOS app must have a unique app ID before being installed onto an iOS device. You also need to

register your app’s ID in the Apple developer member center before the app can be installed on a device.

While we’re on the topic of app IDs, let’s use this opportunity to register the Pet Scrapbook in the

developer member center. Start by browsing to the developer member center at

 Branstein / The NativeScript Book 335

https://developer.apple.com/membercenter and logging in with your Apple ID. You should see several

options, like figure 14.1.

NOTE As of early 2017, the figures throughout this chapter were accurate, but your screen may not

look the same because Apple may have changed the developer member center website. If you’re stuck,

reach out in the book forums and someone will be able to help you. You can find the NativeScript in

Action forums at https://forums.manning.com/forums/nativescript-in-action. Another great forum to

check out is the official NativeScript forums at https://discourse.nativescript.org.

Figure 14.1 The Apple developer member center home page.

Click the Certificates, Identifiers & Profiles link to navigate to the Certificates, Identifiers & Profiles

page.

DEFINITION The Certificates, Identifiers & Profiles page is where you register iOS app IDs and perform

various other functions pertaining to app security.

You’ll spend a lot of time on Certificates, Identifiers & Profiles page, and it can be overwhelming at

first. But it’s ok, we’ll walk you through what you need to know.

On the left side of the page, locate the Identifiers area and click the App IDs link (figure 14.2).

 Branstein / The NativeScript Book 336

Figure 14.2 Navigate to the Identifiers areas by clicking the App IDs link.

The App IDs area lets you register new app IDs and view all your existing app IDs. Figure 14.3 shows

our app IDs, plus two wildcard app IDs.

Figure 14.3 The App IDs areas showing the various identifiers previously created and the + button to add a new ID.

Note we have purposely obfuscated some of the identifiers.

 Branstein / The NativeScript Book 337

DEFINITION Wildcard app IDs are special app IDs that allow Xcode to use a single, generic, app ID (*)

to install any app on a device. We’re not going to spend time discussing wildcard app IDs because we

think it’s important you understand how specific app IDs contribute to iOS security and publishing. If

you’d like to learn more, Apple has a good support article at

https://developer.apple.com/library/content/qa/qa1713/_index.html.

Let’s add an app ID for the Pet Scrapbook by clicking on the plus button at the upper right of the App

IDs screen (figure 14.3). As shown in figure 14.4, enter a description for the app ID in the App ID

Description Name box, and enter the app’s ID in the App ID Suffix Bundle ID box.

TIP You may end up with hundreds of app IDs over several years. Use the description to help you

remember what app the app ID belongs to.

NOTE Our app ID is com.brosteins.petscrapbook, but if you’re following along, you won’t be able to

register your version of the Pet Scrapbook with the same app ID. You’ll have to create a different app

ID. If you have your own domain name, you should use that as the prefix for your app ID. For example,

com.domainname.petscrapbook. Otherwise, try com.lastname.firstname.petscrapbook for your app ID.

Figure 14.4 Creating an App ID for the Pet Scrapbook by entering a name and the ID.

 Branstein / The NativeScript Book 338

The App ID registration screen has several options for you to select (and a lot to read). We encourage

you to read through the details, because it can give you a greater understanding of the App ID registration

process. But, we’ll summarize the important parts. We’ve already looked at the App ID Description section.

There are additional options in the App ID Suffix section relating to wildcard app IDs.

WARNING You can create app IDs in the format of com.brosteins.*, and use that app ID for multiple

apps. But, when an app uses a wildcard app ID, it has restrictions like not being able to use Apple Pay,

iCloud (Apple’s cloud network), or Push Notifications. Your app may not need these services, but most

apps we write tend to use at least one of these services.

The final section of the App ID registration page is the App Services section (figure 14.5).

Figure 14.5 The App Services section is the final section of the App ID creation screen, allowing you to select the

services your app will have enabled.

The App Services section allows you to select from a variety of iOS and Apple services you would like

to enable in your app. We’re not going to cover what these services do in this book, but if you’re interested,

you can learn more at

https://developer.apple.com/library/content/documentation/IDEs/Conceptual/AppStoreDistributionTutor

ial/AddingCapabilities/AddingCapabilities.html.

To add the app ID, click the Continue button, which will bring you to a confirmation page. Click the

Register button to register your app ID. Navigating back to the Identifiers page now shows the Pet

Scrapbook’s app ID registered with Apple (figure 14.6).

 Branstein / The NativeScript Book 339

Figure 14.6 The App ID screen showing the newly-created Pet Scrapbook app ID.

CERTIFICATES

Before we dive in to certificates, we hope you’ve read Apple’s official documentation at

https://developer.apple.com/library/content/documentation/IDEs/Conceptual/AppDistributionGuide/Mai

ntainingCertificates/MaintainingCertificates.html. If you haven’t, don’t worry about it because it’s a tough

(and long read). We’re going to give you the basics you’ll need to get by with NativeScript iOS apps. If

you’re looking for a deeper dive after our explanation, don’t let us hold you back.

DEFINITION Certificates are used in the digital signature process to prove and verify the creator of an

app.

We’re not going to go into detail about certificates because we don’t have the space; it’s relevant, but

you can get by without knowing the intimate details.

Beyond the concept of certificates and that they’re used to digitally sign apps, there are several types

of certificates. We’ll be covering two types that you’ll need to get started: Development certificates (iOS

App Development) and Production certificates (App Store and Add Hoc).

Development certificates are used while you’re developing an app and can be used to install apps on

a device for testing purposes.

WARNING You’re allowed to have one development certificate at a time, and the certificates are good

for a year only.

Development certificates are meant to be a short-term solution used sparingly during your dev/test

cycles. So, that leads us to Production certificates.

 Branstein / The NativeScript Book 340

Production certificates are like Development certificates, but they have a longer life-span and can be

used to publish apps to the App Store. Unlike Development certificates, you can have multiple Production

certificates (but you’re still limited to a total of three).

CREATING CERTIFICATES

Let’s head back to the Certificates, Identifiers & Profiles page to learn how to create a certificate for the

Pet Scrapbook. Navigate to the Certificates section by clicking the All link at the left, as shown in figure

14.7.

Figure 14.7 Click the All link to navigate to the Certificates section.

This page lists the various certificates you have created. When you come to the page for the first time,

you won’t have any certificates and you’ll be prompted to get started (figure 14.8).

 Branstein / The NativeScript Book 341

Figure 14.8 The page you’ll see if you don’t have any certificates.

There is a lengthy (and manual) certificate creation process you can go through in the developer

member center. But, it’s a waste of your time. Instead, we recommend doing it the easy way: use Xcode!

TIP Don’t waste your time creating certificates in the developer member center manually. Use Xcode.

It’s easy!

WARNING Apple does a poor job of naming things consistently. You’ll see certificates called signing

identities in Xcode in some places, and certificates in others. You can ignore the different works and

think of them both as certificates.

We’re going to focus on using Xcode to create a certificate (or signing identity) for us. Let’s get started

by opening Xcode and creating a Development and Production certificate.

NOTE We’re going to assume you already have Xcode installed, because it was a pre-requisite to

running NativeScript on a Mac.

Open Xcode and go to the Xcode-Preferences menu (figure 14.9). If you’ve never launched Xcode,

you’ll be able to find it in your Applications folder.

Figure 14.9 The Xcode – Preferences menu location.

From the Preferences menu, navigate to the Accounts tab and add your Apple ID using the plus icon

at the bottom left. Figure 14.10 shows the plus button location and Mike’s Apple ID that has been added.

NOTE This should be the same Apple ID associated with an Apple developer account.

 Branstein / The NativeScript Book 342

Figure 14.10 The Accounts tab showing the plus symbol to add an Apple ID and Mike’s Apple ID added to Xcode.

Select the Apple ID and click the View Details button in the lower right of the Accounts tab, which

brings up a page showing the details of your Apple developer account (figure 14.11).

Figure 14.11 The Signing Identifies section of the details page, showing the various certificate types that can be

created.

 Branstein / The NativeScript Book 343

At the top of the details page is a list of Signing Identities (a different name for certificates). To create

a signing identity (or certificate), click the Create button. We’ll be creating both a Development certificate

(labeled iOS Development) and a Production certificate (labeled iOS Distribution).

WARNING Apple stinks at naming things consistently. A Development certificate is another word for

iOS Development certificate and an iOS App Development certificate. Similarly, a Production certificate

is another word for an iOS Distribution signing identity and an App Store and Ad Hoc Production

certificate.

Create a Development certificate by clicking the Create button next to the iOS Development signing

identity and wait. After about 15 seconds, the Create button disappears, meaning that a Development

certificate was created.

NOTE Wait a second. I thought Apple’s UX was epic? Somehow, disappearing buttons leave me wanting

more.

If you check back on the Apple developer member center, a new Development certificate appears in

the Certificates area (figure 14.12).

Figure 14.12 The Certificates area showing the newly-created development certificate.

Wow. That was easy! Let’s do the same for our Production certificate. Click the Create button next to

the iOS Distribution signing identity, then refresh the Certificates page to see the Production certificate

added (figure 14.13).

Figure 14.13 The Certificates area showing the development certificate and the newly-created production certificate.

Note the certificate name has been obfuscated on purpose.

 Branstein / The NativeScript Book 344

NOTE You’ll notice right away that the Production certificate has a different name than the Development

certificate. But why? That’s because Development certificates are for individual developers (and are

named for the developer) and Production certificates can be shared across a team of developers (and

are named for the team).

REGISTERED DEVICES

The fourth security-related component is registered devices. During the development and testing process

for an app, you’ll want to get your app in the hands of another person. The best way to do this is to

sideload your app onto a device (iPhone, iPad, and so on). But, before you can sideload, you need to

register the device’s unique device identifier (UDID) with Apple.

DEFINITION A unique device identifier (UDID) is a 40-character string assigned to some Apple devices

(iPhones, iPads, and so on). As the name suggests, these strings are unique and assigned by Apple at

the time the device is created.

Registering a device’s UDID is easy, but getting the UDID can be cumbersome. If you have access to

the device and have a Mac, it’s rather straightforward. Plug the device in via USB, open a Terminal session,

and run the following command:

instruments -s devices

This command lists all physical and simulator devices attached to the Mac. Figure 14.14 shows the

results of running this command on Mike’s Mac.

Figure 14.14 Output of the instruments -s devices command, showing the UDID of Mike’s iPhone.

The UDID is the long 40-character string that we’ve obfuscated.

NOTE Yes *long sigh*, Mike’s iPhone is named Brosteins. So, if you’re ever in an airport and see a

Brosteins WiFi hotspot, chances are, Mike’s nearby.

Let’s use this UDID to register Mike’s iPhone in the developer member center. Navigate to the Devices

area by clicking the All link (figure 14.15).

 Branstein / The NativeScript Book 345

Figure 14.15 Clicking the All link navigates you to the Devices area.

Click the plus icon on the Devices page, and type the device name and UDID on the Registering a New

Device or Multiple Devices page (figure 14.16).

Figure 14.16 The device registration page, entering a device name and UDID.

TIP If you’re going to be testing your app on multiple devices, you can upload a file containing the

devices you wish to register instead of typing in each device individually. For more information on how

to register multiple devices, check out Apple’s official documentation at

https://developer.apple.com/library/content/documentation/IDEs/Conceptual/AppDistributionGuide/M

aintainingProfiles/MaintainingProfiles.html.

 Branstein / The NativeScript Book 346

WARNING You can register only a maximum of 100 devices. This isn’t necessarily a problem because

you shouldn’t need to test your apps on more than 100 devices.

PROVISIONING PROFILES

Ok! You’ve made it this far, and we thank you for that because it’s been a long journey. But it’s about to

pay off. You’ve learned about the Apple developer account, Apple ID, member center, app IDs, certificates,

and registered devices. But so far, these seem like they’re very disparate and unrelated notions.

Provisioning profiles tie these components together.

DEFINITION A provisioning profile is the glue that ties together a Development or Production certificate,

app ID, developer, and registered device or devices. Once created, the provisioning profile is bundled

with an app, authoritatively stating the app’s ID, the creator, where the app can be installed, and

various settings/services the app can use.

Just like certificates, there are two types of provisioning profiles: Development and Distribution.

Development provisioning profiles are intended to be used with development certificates during the

development and testing phases of your app’s lifecycle. But, unlike certificates, provisioning profiles can

change frequently!

NOTE Because provisioning profiles are a combination of certificates, app IDs, developers, and

registered devices, any time one of these items changes, the provisioning profile must be changed.

There are manual and automatic ways of handling this. We’re going to teach you both, but think it’s

important that you understand the manual process before doing it automatically.

Development provisioning profiles change more frequently, as compared with Distribution provisioning

profiles (especially the type that is specific to App Store Distribution).

Provisioning profiles are created in the Apple developer member center. Let’s create a few for the Pet

Scrapbook app. Navigate to the Provisioning Profiles section of the Certificates, Identifiers & Profiles page

by clicking the All link (figure 14.17).

Figure 14.17 Navigate to the Provisioning Profile area by clicking on the All link.

Click the plus icon in the upper right of the iOS Provisioning Profiles page, and select the type of

provisioning profile (figure 14.18).

 Branstein / The NativeScript Book 347

Figure 14.18 The provisioning profile page, showing options to create development and distribution profiles.

There are a lot of different provisioning profile types to choose from, but we’re concerned with only

three of them. These options are often confusing to new iOS developers, but we’ve broken it down to the

following basics:

▪ Development – iOS App Development: use this type for all development and testing work. This

profile allows your app to be installed on multiple devices that you specify.

▪ Distribution – App Store: use this type for a production release of your app to the App Store. This

profile allows your app to be installed on all devices.

▪ Distribution – Ad Hoc: use this type of a production release of your app that will not be published

in the App Store. This profile allows your app to be installed on multiple devices you specify. If you

want to create a private App Store, this is the option to choose.

Let’s start by creating a Development – iOS App Development provisioning profile, which allows us to

do development and testing on a limited number of devices. Select iOS App Development and click the

Continue button.

 Branstein / The NativeScript Book 348

Select the NativeScript in Action Pet Scrapbook add id from the drop down (figure 14.19).

Figure 14.19 App ID selection as part of the provisioning profile creation process.

NOTE You’ll recall we created this earlier in the chapter. If your app ID doesn’t appear in the drop

down, go back to the section about app identifiers and make sure you’ve added your app.

Next, select a Development certificate from the list of certificates (figure 14.20).

Figure 14.20 Development certificate selection as part of the provisioning profile creation process.

NOTE We created a Development certificate in the Certificates section of this chapter. If you weren’t

following along, go back and create a certificate in Xcode to continue.

Now select the registered devices you want to allow the Pet Scrapbook app to be installed on (figure

14.21).

Figure 14.21 Selecting Mike’s iPhone from the list of registered devices as part of the provisioning profile creation

process.

NOTE If your device doesn’t appear in this list, go back to the Registered Devices section of this chapter

to app your device.

On the final step, you’ll name the provisioning profile (figure 14.22).

 Branstein / The NativeScript Book 349

Figure 14.22 Provisioning profiles should be named in accordance with their app name, certificate, and purpose.

TIP Be descriptive in naming your provisioning profiles! Especially the development ones, because you’ll

end up with dozens as you add more and more devices and developers to your team.

After you create your provisioning profile, the last page of the provisioning profile creation wizard will

present you with a link to download it. You’re welcome to download the provisioning profile from the

developer center website, but it’s not necessary because there’s an easier way to download and install

the provisioning profile through Xcode. We’ll show you how to use Xcode in a moment, so stick with us.

Before we continue, go ahead and create a second provisioning profile for the App Store, selecting

Distribution – App Store as the type when creating it. When you’re finished, you should have two

provisioning profiles for the Pet Scrapbook (figure 14.23).

Figure 14.23 The Provisioning Profile area, showing the newly-created profiles for development and distribution.

 Branstein / The NativeScript Book 350

DOWNLOADING AND INSTALLING PROVISIONING PROFILES IN XCODE

Earlier in the chapter, we used the Account tab of the Xcode Preferences menu to create certificates

automatically. Let’s head back there and click the View Details button to open the details page for our

developer account. Figure 14.24 shows this page.

Figure 14.24 The Apple ID detail screen showing the provisioning profiles created online, with a Download button to

install the profiles into Xcode easily.

At the bottom of the details page is a section labeled Provisioning Profiles. To download and install a

provisioning profile, click the Download button next to it. After several seconds, the Download button

disappears, meaning the provisioning profile has been downloaded and installed into Xcode.

TIP You’ll know that you have downloaded an installed a provisioning profile when the Download link

next to the provisioning profile disappears.

Phew. You made it! There’s a lot to know and learn about security around your iOS apps, and

unfortunately, you can’t skip it. But, now that you have the basics under your belt, we’re ready to use

Xcode and publish the Pet Scrapbook!

14.1.2 Managing your app with Xcode

Earlier in this chapter, you learned how the NativeScript CLI transforms your app code (XML, JavaScript,

and CSS) into an Xcode project. You also learned that the CLI could build that Xcode project into an iOS

app without use the Xcode GUI, but we want you to become somewhat familiar with the Xcode GUI. Let’s

get started!

OPENING YOUR XCODE PROJECT

You may recall that the NativeScript CLI places the Xcode project into the platforms folder, but we never

took a closer look. Figure 14.25 show the contents of the platforms/ios folder within the Pet Scrapbook

app.

 Branstein / The NativeScript Book 351

Figure 14.25 The platforms/ios folder contains the Xcode project for the Pet Scrapbook.

Within the platforms/ios folder, you’ll find the PetScrapbook.xcodeproj file. This file is the Xcode project

file. You can open the project by double-clicking this file, or by opening it from the File menu in Xcode.

If you’re following along, let’s open the Xcode project and investigate.

EXPLORING XCODE

After opening the Pet Scrapbook project, you’re greeted with a busy UI, which on the best day is confusing.

In all honesty, the first time we used Xcode, we struggled. A lot. Hopefully some of our tips will help you

get started faster.

Start by expanding the PetScrapbook folder in the left-most area (figure 14.26).

 Branstein / The NativeScript Book 352

Figure 14.26 The Xcode GUI with the Pet Scrapbook project expanded open in the left-side navigator area.

The Xcode UI is separated into three areas. The left-most area is the navigator area, which shows all

the files and folders that are part of the Xcode project. You’ll quickly recognize several items under the

PetScrapbook heading, including the Resources we created earlier in this chapter (Assets.xcassets),

LaunchScreen.storyboard, and the build.xcconfig file. You’ll also notice a copy of the PetScrapbook’s app

folder underneath the PetScrapbook folders. This is your app source code, copied by the CLI during the

prepare process. It’s nice to know the source code is there, but aside from that knowledge, you should

ignore it.

WARNING Do not change files directly in the app folder you see in Xcode. Instead, modify only your

app’s original source code.

Selecting items in the left-most navigator panel will affect what’s shown in the center detail area. The

content of the center detail area changes, depending on the type of file or folder selected on the left. The

exact content of the center detail area isn’t important, but it’s good to know that it will change as you

click around on the left.

The area on the right contains two sub-areas: the inspector area and the library area. You won’t need

these areas, so we’re going to skip over them.

Before we continue, feel free to click through several of the files and folders in the navigator area.

When you’re ready, select the topmost PetScrapbook folder. Let’s explore the center detail area, as shown

in figure 14.27.

 Branstein / The NativeScript Book 353

Figure 14.27 The center detail area, showing the General tab selected.

At the top of the central area are several tab pages to configure project-wide settings. You’ll find tabs

for general settings, app capabilities, and so on. There’s a lot that can be configured, but the NativeScript

CLI has done a lot of the heavy lifting for you, so we’re just going to focus the most important tab:

General.

The General tab is separated into six vertical sections, as described in table 14.2. If you’re feeling this

is a bit overwhelming, we want to reassure you that you won’t have to update more than one of these

options directly.

Table 14.2 The six sections of the General settings tab in Xcode

 Branstein / The NativeScript Book 354

Section Description

Identity This section configures the app’s name, app ID, version, and build numbers. We’ve

discussed these settings in detail throughout this chapter, so they shouldn’t be

surprising. As with most of the Xcode project, don’t change these settings here. If

you need to change them, do so in your app’s source code.

Signing This section configures which provisioning profile is used when building your app.

We’ll discuss this section in detail below.

Deployment Info This section configures the iOS version your app targets, whether it targets iPhones,

iPads, or both. It also configures which screen orientations your app supports. You’ll

recall these are all settings we previously configured in the App_Resources folder.

App Icons and

Launch Images

This section configures which assets and resources your app will use to set the

icons, launch images, or launch screen. Again, these settings were set by the CLI

based on the changes we made to the App_Resources folder.

Embedded

Binaries

This section contains references to the NativeScript core modules. You can ignore

this section.

Linked

Frameworks and

Libraries

This section also contains references to the NativeScript core modules. Ignore this

section as well.

You shouldn’t directly change settings in these sections, but there is an exception we’ll discuss next

for the Signing section.

CONFIGURING APP SIGNING

The only section of the General tab you may want to change is the Signing section. As you’ll recall, this

section controls how digital signatures are applied to your app. This is controlled by the selected

provisioning profile. Figure 14.28 shows the default settings for the Signing section.

 Branstein / The NativeScript Book 355

Figure 14.28 The Signing section of the General tab, showing the Team drop down.

The first thing we want to point out is a warning message that says, Signing for “PetScrapbook”

requires a development team. This means we must select an option from the Team drop down to build

our app in Xcode. Let’s fix this issue by selecting a team. Figure 14.29 shows what’s in our Team drop

down.

Figure 14.29 Mike’s choices for selecting a team include our company’s development team and Mike’s personal team.

The Team drop down will list the various Apple developer accounts added to Xcode. Mike’s personal

developer account (Michael Branstein) is in the list, but he’s also a member of our company’s paid Apple

developer account team (the obfuscated option).

NOTE The personal and corporate teams you belong to will differ from our teams.

We’re going to select our company’s paid Apple developer account team from the drop down, but that

doesn’t mean you need to do the same thing. But, how do you know which team you should pick?

TIP Picking the right team may seem confusing at first, until you think of it from the point of view of

your provisioning profiles. Who owns the provisioning profiles you created earlier? Were they created

as part of a team, or as part of your personal account? When you figure out who owns this app’s

provisioning profile, select that team.

After selecting our company’s team, the warning message disappears (figure 14.30).

Figure 14.30 After selecting our company’s team, the warning message disappears.

 Branstein / The NativeScript Book 356

But wait! Something else odd is going on here. The signing certificate is set to Mike’s developer

certificate, but the provisioning profile isn’t set to the profile we created earlier in this chapter. Instead,

it’s set to a profile named Xcode Managed Profile. And, what’s that checkbox labeled Automatically manage

signing? Seriously, what’s going on?

NOTE Ok, the time has come. The whole cumbersome app ID, certificate, registered device,

provisioning profile fiasco we went through isn’t necessary when you’re doing development and testing.

Xcode can do all of that for you automatically, creating app IDs, certificates, and provisioning profiles.

How nice. And convenient. But, please don’t be angry with us. You needed to understand all those

concepts before you got to this point. If you hadn’t learned about app IDs, certificates, registered

devices, and provisioning profiles already, we’re not sure how we would have explained that all at this

exact moment.

When the Automatically manage signing checkbox is checked, Xcode will do everything for you. But

what about Production provisioning profiles? That’s where we’ll need to make some changes.

Even though it’s convenient to have Xcode automatically manage app signing, let’s uncheck the

checkbox and manually configure Xcode to use the provisioning profiles we created earlier. When the

checkbox is unchecked, two new sections appear. Figure 14.31 shows the Signing (Debug) and Signing

(Release) sections.

Figure 14.31 Unchecking the automatic signing management checkbox reveals sections for Debug and Release

signing.

In both sections, a warning message is displayed, but you’ll recognize it because it’s the same message

we’ve seen previously. To resolve the issue, select the appropriate provisioning profile for each section:

 Branstein / The NativeScript Book 357

NativeScript in Action – Pet Scrapbook – Dev for Debug and NativeScript in Action – Pet Scrapbook – App

Store for Release. After selecting the profiles, the team and signing certificate are set automatically (figure

14.32).

Figure 14.32 The Debug and Release Signing sections after selecting the development and distribution provisioning

profiles.

And with that change, we’re finished and ready to build our application in Xcode.

14.1.3 Building your app

Building a NativeScript app in Xcode is a two-step process:

1. Setting the active scheme to Generic iOS Device.

2. Running the Xcode build process.

SETTING THE ACTIVE SCHEME TO GENERIC IOS DEVICE

Before you start an Xcode build, the Xcode project’s active scheme should be set to Generic iOS Device.

DEFINITION Xcode schemes are project-level configuration settings that define how an Xcode project

will be built, the configuration settings that should be used during the build process, and a collection of

tests to run. Xcode projects can have multiple schemes defined, but only one active scheme.

To select the active scheme, click the schemes selector in the upper-left corner of Xcode (figure 14.33).

 Branstein / The NativeScript Book 358

Figure 14.33 Xcode schemes can be changed by clicking the schemes drop-down at the top left of Xcode.

In the drop-down list that appears, scroll through the list until you find a section titled Build Only

Device, and select the Generic iOS Device option (figure 14.34).

Figure 14.34 Select the Generic iOS Device scheme to set it as the active scheme.

RUNNING THE XCODE BUILD PROCESS

Starting the Xcode build process is by far the easiest thing we’ve done in this chapter. Navigate to Xcode’s

Product menu and select the Build option, as shown in figure 14.35.

 Branstein / The NativeScript Book 359

Figure 14.35 To Build an iOS app, go to the Product menu and select the Build option.

The build process can take anywhere from 5 to 60+ seconds, depending on the speed of your Mac,

the size of your app, the number of images, and so on. When it’s finished building, a build finished message

will show.

14.1.4 Creating an app archive

The final step in getting your app ready for publishing to the App Store is to create an app archive. You’ll

recall that we mentioned archiving apps earlier in this chapter. Let’s continue to explore app archives how

they are created.

DEFINITION An archive is an .ipa file (which stands for iOS application archive), that includes the

compiled binaries for an app. Archives submitted to the App Store are digitally signed with the certificate

associated with the app’s release provisioning profile.

Now that we have a build of the Pet Scrapbook, let’s create an archive so we can upload it to the App

Store.

Creating an archive is like building an app. From the Product menu, select the Archive option (figure

14.36).

 Branstein / The NativeScript Book 360

Figure 14.36 To create an app archive, select the Archive option from the Product menu.

When archiving an app, Xcode first re-builds the app, creates an archive, then opens the Organizer

window (figure 14.37).

NOTE You may be wondering why you had to build the iOS app before archiving if archiving just re-

builds it for you. It’s a bit more in-depth than we want to go into in this book. Just accept that archiving

your app will also re-build it first. If you’re interested in some details and a discussion on building versus

archiving, check out http://stackoverflow.com/questions/14640816/how-to-create-xcode-archive-

without-a-clean-build.

DEFINITION The Xcode Organizer tracks the archives of iOS apps and allows you to upload an app

archive to the App Store.

 Branstein / The NativeScript Book 361

Figure 14.37 The Xcode Organizer showing the Pet Scrapbook app archive.

In the Organizer window, you’ll find archives of all your apps that were built and archived by Xcode.

The Organizer acts like a staging ground for your apps before being uploaded to the App Store.

UPLOADING YOUR APP TO THE APP STORE VIA ITUNES CONNECT

Now that you have an archive of the Pet Scrapbook app, the only thing left to do is upload the archive to

the App Store via iTunes Connect (which you’ll recall from the beginning of this chapter).

DEFINITION iTunes Connect is a section of the Apple developer member center portal dedicated to

creating, preparing, and submitting apps to the App Store.

 We’re not going to walk you through the entire iTunes Connect experience of creating an app,

uploading it, and so on for a couple of reasons:

1. It’s quite time-consuming, and we don’t have the space to give a lengthy explanation.

2. Using iTunes Connect is self-explanatory, because each step of the app creation and submission

process is documented thoroughly on each step of the submission process.

3. There are several good walk-throughs available online, including

https://www.raywenderlich.com/127936/submit-an-app-part-1 and

http://codewithchris.com/submit-your-app-to-the-app-store.

4. The App Store submission process changes regularly, and Apple’s official documentation will be

much more up-to-date than this book.

14.2 Summary

In this chapter, you learned the following:

▪ How the NativeScript CLI uses a two-phase process to create an Xcode project.

▪ How provisioning profiles are used to publish apps for development and production (App Store and

Ad Hoc distribution) purposes.

▪ How to use the Xcode GUI to configure, build, and archive an iOS app.

 Branstein / The NativeScript Book 362

14.3 Exercises

Using what you learned in this chapter, do the following:

1. Using the Apple developer member center, create a development and distribution provisioning

profile for your app created in exercise 1.

2. Using Xcode, create an app archive using the provisioning profile created in exercise 2.

14.4 Solutions

1. To create a provisioning profile for the new app:

a. Go to the Apple developer member center.

b. Navigate to the Certificates, Identifiers, and Profiles area.

c. Create an app ID for the app named org.nativescript.sampleapp. Note that your app’s

id may be different.

d. Follow the instructions from the chapter section about certificates to create a

development certificate if you don’t have one already.

e. Follow the instructions from the chapter to add a registered device if you don’t have

any registered devices.

f. Go to the Provisioning Profile area and create a new development provisioning profile

for the app ID, certificate, and registered devices created above. For specific step-by-

step instructions, follow the walk-through in this chapter.

g. Do the same for an App Store distribution provisioning profile.

2. To create an app archive:

a. Run tns build ios from the command line to create an Xcode project.

b. Open the Xcode project from the platforms/ios folder of your app.

c. Select your project form the navigator’s area in Xcode.

d. Uncheck the Automatically manage signing checkbox in the General tab of your Xcode

project.

e. Select the provisioning profiles you created in the previous exercise for Debug and

Release signing configurations.

f. Change the active scheme to Generic iOS Device.

g. Select the Archive option from the Products menu in Xcode.

 Branstein / The NativeScript Book 363

Part 4:
Angular

and NativeScript

 Branstein / The NativeScript Book 364

15
Creating a NativeScript App with

Angular

This chapter covers:

▪ Why you may want to create NativeScript apps with Angular

▪ How to create and run a NativeScript-with-Angular app

▪ The structure of an Angular app

In the last chapters, we finished the Pet Scrapbook app and you learned how to prepare it for deployment

to the App Store and Google Play store. We could stop here, and you’d have the tools and understanding

needed to start writing your own apps with NativeScript. But, that wouldn’t be fair because there’s more

to NativeScript than vanilla NativeScript. You can also create NativeScript apps with Angular, also known

as NativeScript-with-Angular apps.

DEFINITION NativeScript-with-Angular apps are a type of NativeScript app that is written using the

Angular JavaScript framework. Apps still rely on NativeScript’s core modules and the NativeScript

runtime, but let you replace NativeScript’s app structure, page definition, navigation, and data binding

with the corresponding Angular way of doing things.

Angular (a.k.a. Angular 2+) is the successor to the popular web development framework, Angular 1

(also known as AngularJS). Like NativeScript, Angular is an open source JavaScript framework, and it’s

maintained by Google and other development community members.

In this chapter, you’ll learn why NativeScript apps with Angular are a compelling choice (versus vanilla

NativeScript) and how to create NativeScript-with-Angular apps. Then, you’ll wrap up the chapter by

creating your first NativeScript-with-Angular app and comparing the structural differences between a

vanilla NativeScript apps and a NativeScript-with-Angular app.

 Branstein / The NativeScript Book 365

Before we jump in, we want to address another elephant in the room: what if you haven’t used Angular

before? Will this book teach you every you need to write Angular apps? The short answer is no, and that’s

because writing apps with Angular can fill an entire book. Instead, you should know the basics of writing

HTML apps with Angular. Then, we’ll build on that knowledge and teach you how to use Angular and

NativeScript together to write native mobile apps.

NOTE If you’d like to learn the basics of Angular, we highly recommend the official Angular QuickStart

guide at https://angular.io/docs/ts/latest/quickstart.html.

If you’re familiar with Angular, or just finished the QuickStart, keep reading. Otherwise, take a short

detour and work through the Angular QuickStart at https://angular.io/docs/ts/latest/quickstart.html, then

come back. From this point forward, we’ll assume you have the basics of Angular under your belt.

15.1 Why Angular

So why are we talking about Angular in a NativeScript book? Most web developers have heard of Angular

or have used it at least once. And, if you’re looking to write native mobile apps, wouldn’t it be great to

build native mobile apps using the same frameworks and skills you use developing web apps? NativeScript

with Angular does just that.

NOTE But wait, isn’t Angular a JavaScript framework made for building web apps? Yes, it was. But as

of v2.0.0, Angular was re-written to be platform-agnostic, meaning that Angular isn’t about HTML,

JavaScript, and CSS only. You can use Angular to write other types of apps, like NativeScript.

Skill reuse isn’t the only advantage to using NativeScript with Angular over vanilla NativeScript. At the

same time, NativeScript with Angular isn’t all rainbows and unicorns: there are some disadvantages. Table

15.1 shows the different advantages and disadvantages of using NativeScript with Angular.

Table 15.1 Advantages and disadvantages of using NativeScript with Angular

Advantages Disadvantages

No CSS bleed Increased complexity

Passing data between pages is subjectively easier Data binding syntax

Dynamic UI through Angular structural directives TypeScript

Data binding Filename conventions are not supported

TypeScript Increased application size

NOTE You may have noticed that TypeScript is listed as both an advantage and disadvantage. This

isn’t a mistake, and we’ll explain why below.

 Branstein / The NativeScript Book 366

Let’s take a closer look at the advantages and disadvantages of using Angular, then review our

recommendations for when NativeScript with Angular makes sense.

15.1.1 Advantages

Throughout this chapter and the next, we’ll go through an example of using NativeScript with Angular,

and you’ll learn about these advantages firsthand.

NO CSS BLEED

If you’ve done web development in the past, you may love and hate CSS simultaneously. Its ability to

cascade styles through an application is powerful: you can create global styles that can be overridden and

adjusted on per-page and per-element basis. But, in larger applications, the cascading effect of CSS can

be confusing and troublesome. For example, tracking down the source of a style that has been partially

overridden multiple times is downright frustrating. Furthermore, selecting a "good" CSS class name can

be hard: on large applications, you never know if someone else has used a class name you’ve selected.

These same problems with CSS exist in NativeScript.

An advantage of using Angular is its handling of CSS by using something called components.

DEFINITION Angular components are a collection of UI elements and code that are walled-off from

other components. By walled-off, we mean that components can’t directly reach into each other. In a

way, they have a force-field around them, limiting the data and interactions that come into the

component and go out of the component.

A side-effect of the component model used by Angular is that CSS styles and classes do not traverse

a component boundary. For example, assume there are two components, both with a defined class name

highlight, but with different styles. Without components, the multiple definitions of the highlight

class would bleed into each other. But, when components are used, both components can define a different

highlight class and not worry about affecting other components.

PASSING DATA BETWEEN PAGES IS SUBJECTIVELY EASIER

Angular also provides some improvements to databinding by managing an observable on your behalf.

Because Angular manages the observables object for us, it eases the process of accessing a single

observable object across pages easy.

DYNAMIC UI THROUGH ANGULAR STRUCTURAL DIRECTIVES

Another great feature of Angular is its ability to create dynamic UIs by using structural directives.

DEFINITION Structural directives are parts of the templating engine of Angular that help to manipulate

the layout of the UI. Some examples are structural directives that create FOR loops or IF-THEN

statements inside a UI.

The most common structural directives, NgIf, NgFor, and NgSwitch, can be applied to any UI element,

allowing you to dynamically add or remove UI elements via code written in the UI. In the next several

chapters, we’ll be using structural directives, and you’ll learn how they can simplify the Pet Scrapbook’s

UI code.

 Branstein / The NativeScript Book 367

DATA BINDING

Angular has rich support for data binding allowing you to integrate data into UI elements easily. Like

vanilla NativeScript, NativeScript with Angular allows you to bind string expressions, events, CSS styles.

We included data binding as an advantage because you might be familiar with the Angular data binding

model. But, if you’re not familiar, the syntax is comparable to NativeScript’s.

TYPESCRIPT

The last advantage of using Angular in your NativeScript app is TypeScript.

DEFINITION TypeScript is an open-source development language maintained by Microsoft.

TypeScript combines the features of JavaScript, but adds many of the capabilities of an object-

oriented language (like classes and type-safety). Coding in TypeScript is like coding in JavaScript,

but with a C# or Java-like syntax.

When creating an Angular app, you use TypeScript instead of JavaScript. We’ll discuss TypeScript in

detail later in this chapter, because it’s important to understand. You may have noticed that TypeScript

is also listed as a disadvantage to using Angular. This is because you may not have used TypeScript, and

it may be a new skill you’ll have to learn to write NativeScript-with-Angular apps. But, we believe learning

TypeScript will be an essential skill for developers soon.

NOTE You can create vanilla NativeScript apps using TypeScript also, but we won’t be covering that in

this book because we think it’s important to understand NativeScript by using JavaScript first. If you’re

interested in learning how to use TypeScript with NativeScript, check out

https://www.nativescript.org/using-typescript-with-nativescript-when-developing-mobile-apps.

15.1.2 Disadvantages

We’ve looked at the advantages, but nothing’s perfect in this world, and that includes NativeScript-with-

Angular apps. Various advantages can be considered disadvantages for developers, because you need to

first learn NativeScript, then learn Angular, and finally merge the two together. In this section, we’ll

explore our thoughts on why NativeScript-with-Angular apps may not be right for you.

INCREASED COMPLEXITY

NativeScript-with-Angular apps are more complex. They have more files than a vanilla NativeScript app

and more npm dependencies. Angular is also a framework written for full-time developers, not the casual,

write-a-website-on-the-weekend-for-your-relatives developer. Angular assumes you understand

advanced software development concepts like dependency injection. Because of this assumption, if you’re

not already familiar with the advanced topics, it will take some extra effort to get started.

DEFINITION According to Wikipedia, dependency injection is a technique where one object supplies

the dependencies of another object. Because this is an advanced topic in software development (and

not important to this book), we’re not going to cover this more. If you’d like to learn more, check out

https://en.wikipedia.org/wiki/Dependency_injection.

 Branstein / The NativeScript Book 368

All the items we just described make Angular more complex to understand, thus making it more

complex to build a NativeScript-with-Angular app.

NOTE Don’t let the increased complexity of Angular scare you away. Many developers we know prefer

building NativeScript apps with Angular.

DATA BINDING SYNTAX

If you recall, we considered data binding an advantage because Angular data binding was like vanilla

NativeScript data binding. The data binding syntax isn’t a disadvantage technically. But, it’s different. And

that means you’ll need to learn the Angular way of doing things.

TYPESCRIPT

Like data binding, TypeScript is both an advantage and disadvantage. We think TypeScript can be

intimidating and possibly confusing for beginners. NativeScript and Angular make it easy to use, but

because some syntax differs from JavaScript, we consider it a disadvantage for some.

FILENAME CONVENTIONS ARE NOT SUPPORTED

Back in chapter 2, we described how you can use the .android and .ios file-naming convention to

have a file target a specific mobile platform. This is a powerful feature of vanilla NativeScript that can

keep platform-specific code in separate files. Unfortunately, Angular doesn’t respect this convention, so

we consider it a disadvantage.

INCREASED APPLICATION SIZE

The most significant disadvantage is application size. Angular apps are much larger in size. The size

difference is directly related to the size of Angular and the large number of dependencies. Furthermore,

NativeScript-with-Angular apps have slow startup process, notably slower than vanilla NativeScript

because of the large number of JavaScript files loaded. There is good news though. You can significantly

reduce the size of your app while decreasing its size by using another tool called webpack.

DEFINITION Webpack is an open-source tool that can be used to reduce the size and loading time of

JavaScript-based apps by packing (or bundling) the files in a smart way. Understand webpack and how

it can be used in Angular apps is far beyond the scope of this book. For more information on webpack,

check out https://webpack.github.io and the NativeScript with Angular webpack plugin at

https://www.npmjs.com/package/nativescript-dev-webpack.

Because size and loading time of NativeScript-with-Angular apps is noticeably worse when compared

to vanilla NativeScript, we recommend using webpack. Stay tuned, because we will cover it later in this

book.

15.1.3 Recommendations

We’ve talked about the advantages and disadvantages of using Angular with NativeScript, but what does

it really mean? A lot of the advantages and disadvantages are subjective because Angular has structural

and syntactical differences that you may or may not prefer. And, when you use Angular with NativeScript,

you’re locked into doing it the Angular way.

 Branstein / The NativeScript Book 369

Regardless, we’re split: Nick prefers building NativeScript apps with Angular, and Mike prefers vanilla

NativeScript. But, we do have an important recommendation for choosing Angular in a very specific

circumstance. If you’re writing a mobile app and think it may also be beneficial to be consumed as a web

app, use Angular. You’ll be able to reuse a large portion of your NativeScript code and build a web app

that looks and behaves identically.

TIP If you’re writing a mobile app and think it may also be beneficial to be consumed as a web app,

use Angular. You’ll be able to reuse a large portion of your NativeScript code, and build a web app that

looks and behaves identically.

Our final recommendation is to learn NativeScript first, then learn Angular, then try them together. By

learning NativeScript first, you’ll get a solid NativeScript foundation and understand the boundaries

between Angular and NativeScript.

15.2 Using NativeScript with Angular to recreate the Pet Scrapbook app

Now that you’ve learned about the advantages and disadvantages of creating NativeScript apps with

Angular, let’s dive in and create your first NativeScript-with-Angular app. Start by opening the command

prompt on your computer, just like you do when you’re creating a NativeScript app.

NOTE You may be wondering if you need to configure your computer in a special way, or install

additional components to build a NativeScript-with-Angular app. We’re happy to say, you don’t. Like

vanilla NativeScript apps, you use the NativeScript CLI, Sidekick, or Playground to create, build, and

run NativeScript-with-Angular apps.

Because you’re familiar with the Pet Scrapbook app, we’ll be using it as a reference point throughout

the rest of the book. In this chapter, we’ll start to create a NativeScript with Angular version of the Pet

Scrapbook. By the end of the book, you’ll have learned how Angular works with NativeScript and have a

side-by-side comparison of the Pet Scrapbook written with and without Angular.

NOTE Before it gets confusing, let’s talk about naming conventions for the two different versions of

the Pet Scrapbook. We’ll refer to the original vanilla NativeScript version of the Pet Scrapbook as the

original Pet Scrapbook, or simply the Pet Scrapbook. When we’re talking about the Angular version,

you’ll see the Pet Scrapbook Angular.

15.2.1 Scaffolding an Angular project

Earlier in the book, you learned to use the tns create CLI command to scaffold a vanilla NativeScript

app. For example:

tns create PetScrapbook --template template-hello-world

 Branstein / The NativeScript Book 370

Scaffolding a NativeScript-with-Angular app is the same as scaffolding a vanilla NativeScript app. You’ll

use the tns create command again, but with a different template. The NativeScript-with-Angular app

template is named tns-template-blank-ng.

DEFINITION You might be wondering what the letters ng means. No, it doesn’t stand for the Next

Generation (think Star Trek). Ng is a common abbreviation for Angular. You’ll see it throughout this

book and in other places.

Let’s start by creating an NativeScript with Angular version of the Pet Scrapbook. If you’ve been

following along with the book, you’ll already have created an app named PetScrapbook, so name the

Angular version PetScrapbookAngular:

tns create PetScrapbookAngular --template tns-template-blank-ng

TIP You can also run tns create PetScrapbookAngular --ng to scaffold a NativeScript-with-

Angular app, but we chose not to because it adds a lot of extra files you won’t need. When using the -

-ng parameter, you cannot specify a template, because the CLI uses the default Angular template

automatically.

NOTE If you’re using Sidekick, create a new app with Angular & TypeScript and choose the Blank

template. If you’re in the Playground, create a new app with NS + Angular. These options will scaffold

a new app using the tns-template-blank-ng template.

PLAY Check out the beginning code for the Angular version of the Pet Scrapbook in the Playground at

https://play.nativescript.org/?template=play-ng&id=GfqjRH.

Now that you’ve created the app, let’s run it.

15.2.2 Running an Angular project

Running the Pet Scrapbook Angular app is the same as running the Pet Scrapbook app. Using the tns

platform add CLI command, add the Android or iOS platform:

tns platform add ios

tns platform add android

After adding the platform, run the app using the tns run command:

tns run ios --emulator

tns run android --emulator

Figure 15.1 shows what the new Pet Scrapbook app looks like running on Android and iOS.

 Branstein / The NativeScript Book 371

Figure 15.1 The new Angular Pet Scrapbook app running on iOS, showing that it looks just like a vanilla NativeScript

app.

The Pet Scrapbook Angular app looks and feels the same as a vanilla NativeScript app, but there’s a

lot more going on behind the scenes. Let’s take a closer look, because although it’s a NativeScript app,

it’s structured differently.

Increase Development Speed with NativeScript and Angular Schematics

If you’re looking for a way to build NativeScript apps faster, Angular Schematics is the way to go.

In short, Angular Schematics is a workflow tool to help you build Angular apps faster and with greater

ease. Think of it as a quick way to generate components and perform other routine tasks in an Angular

project. We’re not going to dive deep into Angular Schematics, but you can learn more at

https://blog.angular.io/schematics-an-introduction-dc1dfbc2a2b2.

Because NativeScript-with-Angular apps are Angular apps, you can use schematics with your

NativeScript apps to create components and build modules faster. Sebastian Witalec has worked with

the NativeScript development team to build a NativeScript-compatible version of schematics called

NativeScript Schematics. NativeScript Schematics is ready to use today and fully-supported by the

NativeScript team, so check it out at https://github.com/NativeScript/nativescript-schematics.

In addition to building apps faster, NativeScript Schematics will allow you to quickly create shared

components for a web and mobile app. Specific capabilities include: taking a web-based Angular app

(or NativeScript Angular app) and converting it to a web/mobile code sharing app, generating

components for code-sharing and non-code-sharing apps, and generating mobiles for code-sharing and

non-code-sharing apps.

 Branstein / The NativeScript Book 372

15.2.3 App structure

A difference between a NativeScript-with-Angular app and a vanilla NativeScript app is the structure of

the app. In chapter 3, you learned about the structure of vanilla NativeScript app. Figure 15.2 shows the

folder structure of the Pet Scrapbook Angular (left) compared with the Pet Scrapbook (right).

Figure 15.2 The project structure of the Pet Scrapbook Angular app compared with the structure of a vanilla

NativeScript app.

At first glance, both projects look similar. Both apps have an app folder where the app code files are

located.

You’ll notice that many of the files are different. That’s because this is an Angular app embedded within

a NativeScript app, and the structure follows the structure of a standard Angular app, not a NativeScript

app. We’ll cover how Angular is embedded within a NativeScript app later in this chapter, but if you need

a review of how an Angular app is structured, check out https://angular.io/docs/ts/latest/quickstart.html.

You may also notice the code files within the app folder don’t end with .js. That’s because the code

files are TypeScript files, not JavaScript. We’ll discuss TypeScript in greater detail shortly, so stay tuned.

For now, just know that the .ts files are TypeScript files.

 Branstein / The NativeScript Book 373

NOTE The hooks folder is used by the NativeScript CLI to help process the TypeScript files in the

solution and compile them into JavaScript. We won’t discuss these files because you don’t need to

modify them.

Finally, there are the node_modules and platforms folders, which you learned about in chapter 3. In

NativeScript-with-Angular apps, these folders have the same purpose: the node_modules folder contains

npm packages like the NativeScript core modules and plugins, the platforms folder contains the native

apps for Android and iOS.

NOTE In a NativeScript-with-Angular app, the node_modules folder will have many more npm

packages. That’s because the app includes the Angular framework and other frameworks needed by

NativeScript to work with Angular.

Now that you know about the difference in app structure, let’s revisit the elephant in the room:

TypeScript.

15.3 TypeScript

In the last section, you learned that TypeScript is an open-source development language, created and

maintained by Microsoft.

NOTE You may be wondering why we’re even talking about TypeScript. TypeScript is the preferred

language for writing Angular code (per the creators of Angular). Because of this preference, the

NativeScript with Angular templates assume you’ll be writing your app with TypeScript.

Even though you’re not required to write NativeScript-with-Angular apps using TypeScript, do yourself

a favor by using TypeScript. We’ll introduce you to the basics of TypeScript in this chapter, and help you

write in TypeScript throughout the remainder of this book. If you’re still on the fence about using

TypeScript in your NativeScript-with-Angular app, you’ll have to learn how to use JavaScript with Angular

by going through the Angular JavaScript QuickStart at https://angular.io/docs/js/latest/quickstart.html.

15.3.1 Understanding TypeScript

TypeScript is a superset of JavaScript, meaning that all JavaScript code (and syntax) is TypeScript code.

Figure 15.3 shows this relationship.

 Branstein / The NativeScript Book 374

Figure 15.3 JavaScript code (and syntax) is a subset of the syntax that is valid in TypeScript.

At first, the relationship between JavaScript and TypeScript can be confusing. Think of it this way: if

you write some JavaScript code like var i = 1;, it is both valid JavaScript and TypeScript. That’s

because TypeScript is based on JavaScript. But, if you write TypeScript-specific code, it isn’t considered

valid JavaScript.

Most browsers and JavaScript engines can’t read TypeScript-specific code directly, so when you write

TypeScript code, it needs to be transformed (or transpiled) into JavaScript code. Luckily, you don’t need

to do this transpilation process manually: Microsoft provides you with a transpiler that can take a code

file written in TypeScript and make an equivalent JavaScript file.

NOTE When you build your NativeScript-with-Angular app with the CLI, it transpiles your TypeScript

code to Javascript automatically. So, the whole transpilation process is hidden from you. Because it’s

hidden and happens behind the scenes, we don’t think it’s important to dive deeper into the transpilation

process. For the purposes of this book, you should know it’s happening, but not be concerned how. If

you’d like to learn more, check out http://www.typescriptlang.org.

15.3.2 Why TypeScript is significant

If all TypeScript is just any valid JavaScript, then what makes it different? TypeScript is different because

it enhances JavaScript by implementing object-oriented programming principles and modern

programming language features of ECMAScript.

DEFINITION ECMAScript is the official specification name of programming languages such as JavaScript

and TypeScript.

In our opinion, TypeScript is significant because it can be used as a type-safe language. JavaScript

cannot.

DEFINITION A type-safe language is one that validates the data type of variables before

operations are performed against them.

Defining variables in TypeScript works the same as JavaScript: var firstName;. But, you can go a

step further in TypeScript and specify a variable’s data type. For example, to define a string in TypeScript

you would write var firstName : string;.

In addition to type safety, TypeScript also gives you the ability to define interface, class, Enums,

generics, and many other object-oriented and modern language features. We won’t be going into detail

about every single feature of TypeScript because for the most part it will probably look very familiar to

you as a JavaScript developer. If you’d like to review a detailed tutorial on TypeScript, go to

https://www.typescriptlang.org/docs/tutorial.html.

 Branstein / The NativeScript Book 375

15.4 NativeScript Angular integration

Earlier in this chapter, you learned that the node_modules folder contains many more npm packages in a

NativeScript-with-Angular app. And, that’s because of the additional of Angular and other dependent

frameworks. In addition to the Angular-related packages, there’s a special NativeScript-to-Angular

integration package called NativeScript-Angular. Because NativeScript and Angular don’t magically work

together, the NativeScript-Angular packages works to marry them together.

NOTE The NativeScript-Angular packages are maintained by the NativeScript team. You can review the

source on Github at https://github.com/NativeScript/nativescript-angular.

The NativeScript-Angular packages are just another npm package like the NativeScript core modules.

You don’t need to worry about adding these packages manually because they are added automatically

when your NativeScript-with-Angular app is scaffolded (figure 15.4).

Figure 15.4 The node_module folder of the Angular Pet Scrapbook app contains various NativeScript-Angular

packages. These are added to the project when it is scaffolded.

Let’s start by reviewing how a NativeScript app using Angular app is launched.

15.5 Understanding NativeScript-with-Angular app startup

Now that you’ve learned about the structure and components of a NativeScript-with-Angular app (app

structure, Angular and NativeScript-Angular packages, and TypeScript), let’s see how they all work

together. In chapter 3, you learned that the entry point for a NativeScript app is the app.js file. In a

 Branstein / The NativeScript Book 376

NativeScript-with-Angular app, the entry point to the app is main.ts, as defined in the package.json file

within the app folder. Listing 15.1 shows how the main.js file is set as the main entry point via the main

property.

WARNING If you’re using the Playground, you won’t be able to see the package.json file – it’s hidden

to simplify the UI.

Listing 15.1 The main entry point defined in the package.json file of a NativeScript-with-Angular

app

{

 "android": {

 "v8Flags": "--expose_gc"

 },

 "main": "main.js",

 "name": "tns-template-blank-ng",

 "version": "4.1.0"

}

#A app entry point

If you’re looking closely you may have noticed that the entry point of the app is main.js, but we said

it was main.ts. This is a bit of semantics: yes, main.js and main.ts are different files, but remember,

you’re writing code in TypeScript. This means that you make changes to the main.ts file, and the

NativeScript CLI transpiles it into the main.js file during the build process. You’ll recall this happens behind

the scenes, but it also means that the NativeScript runtime is really looking for the JavaScript files.

NOTE This is the only time you’ll see us refer to a JavaScript file in the NativeScript-with-Angular app.

Throughout the rest of the book, we’ll be referring to the TypeScript files, because that’s what you’ll

interact with. But understand that behind the scenes, NativeScript transpiles these files into JavaScript,

and the JavaScript is what NativeScript really uses.

Now that you understand how the NativeScript runtime finds the main.ts file, let’s see how it is used

to start the app. Listing 15.2 shows main.ts from the NativeScript-with-Angular Pet Scrapbook app.

Listing 15.2 The main entry point to an Angular app main.ts

// this import should be first in order to load some required settings

// (like globals and reflect-metadata)

import { platformNativeScriptDynamic } from "nativescript-angular/platform"; // #A

import { AppModule } from "./app.module"; // #B

platformNativeScriptDynamic().bootstrapModule(AppModule); // #C

#A Import the module to launch an NativeScript app inside of Angular

#B The main settings of the Angular app

#C Launch the app

 Branstein / The NativeScript Book 377

Listing 15.2 introduces a new concept from the TypeScript language: imports. In TypeScript, you can

import a method, function, class from another file in your project. Importing a method is like the require

syntax that we use to reference a core module in a vanilla NativeScript app.

NOTE The import statement automatically looks in the node_modules folder for references, just like

the require statement does. When a package is imported, it is referenced via its file name without the

.ts extension, but it really loads the file with the .ts extension.

At a high-level, the code in main.ts imports the NativeScript-Angular integration layer and an Angular

module from the app.module file. Then, it launches the Angular runtime, referencing the module just

imported. You don’t need to know any further details of the code in main.ts because this is code that’s

provided for you via the NativeScript with Angular template.

15.5.1 Understanding the app.module.ts file

Let’s take a closer look at the app.module.ts file, which is loaded by the Angular runtime when the app

starts (listing 15.3).

Listing 15.3 The app.module.ts file showing the application settings

import { NgModule, NgModuleFactoryLoader, NO_ERRORS_SCHEMA } from "@angular/core";

import { NativeScriptModule } from "nativescript-angular/nativescript.module"; // #A

import { AppRoutingModule } from "./app-routing.module";

import { AppComponent } from "./app.component";

@NgModule({ // #B

 bootstrap: [// #B

 AppComponent // #B

], // #B

 imports: [// #B

 NativeScriptModule, // #B

 AppRoutingModule // #B

], // #B

 declarations: [// #B

 AppComponent // #B

], // #B

 schemas: [// #B

 NO_ERRORS_SCHEMA // #B

] // #B

}) // #B

export class AppModule { }

#A The main NativeScript module to connect NativeScript and Angular together

#B Create our Angular app with specified settings

As you continue to build the Angular Pet Scrapbook you’ll periodically visit the app.module.ts to modify

the settings of your app. If you’ve gone through the Angular tutorials on http://angular.io, you’ll recognize

the contents of the app.module.ts file. It’s standard Angular module instantiation. We’re not going to dive

into the details of what an Angular module is, so check out http://angular.io if you’re not sure what we’re

referring to.

 Branstein / The NativeScript Book 378

For now, it’s important to note a couple of things in the app.module.ts file. The NativeScriptModule

import statement gets a reference to the main NativeScript-Angular library. Normally, an Angular app

runs inside a web browser, but we are running the app inside of the NativeScript runtime, and various

browser-specific things (like the document and window object) don’t exist. Because of this, we’ll pass

NativeScriptModule into the @NgModule declaration.

@NgModule is a TypeScript decorator that helps define further metadata about the class immediately

following the decorator: AppModule.

DEFINITION TypeScript decorators are a special type of function that can precede a class declaration,

method, accessor, or property. They’re called decorators because they’re interpreted as decorating

code that comes directly after it, and providing additional information (or metadata) about the code.

Decorators use the @ syntax to define themselves, and are evaluated like a function that is run

immediately before the execution of the code it decorates. To learn more about decorators, check out

the official TypeScript documentation at

https://www.typescriptlang.org/docs/handbook/decorators.html.

For the purposes of this book, you don’t need to know much about decorators. Remember that

@NgModule is like a function that runs right before the class AppModule is created, and (like a function)

it has various parameters that can be passed in. The parameters include:

▪ The bootstrap parameter is the root component of the Angular app, meaning that when the app is

launched, the AppComponent will be loaded.

▪ The declarations array tells Angular which components (or pages) are available to the app.

DEFINITION Angular components can be thought of as different pages of a NativeScript app. We’re not

going to explain how Angular components work in detail, because you should already know about them

from running through the Angular tutorial at http://angular.io.

NOTE When a component is referenced in a NativeScript-with-Angular app, it is referenced via its file

name without the .ts extension. For example, when app.component is referenced, it refers to the file

app.component.ts.

When the @NgModule statement runs, AppComponent is loaded, which points to the app.component

file. Let’s look at app.component to finish our walk-through of NativeScript-with-Angular app startup.

15.5.2 Angular components and the app.component.ts file

Angular apps can be broken down into many different components, and NativeScript-with-Angular apps

use Angular components heavily. In the previous section, you learned that components can be thought of

various pages of a NativeScript-with-Angular app, but they’re a bit more than just a page. Components

are separate self-contained views that can be used once as a page, or reused as a sub-section of multiples

pages. Later in this book, you’ll see how you can reuse a component across several pages, but for now,

let’s stick to the idea that a component is a page.

 Branstein / The NativeScript Book 379

The component defined in the app.component.ts file is the initial component (or page) loaded into a

NativeScript-with-Angular app. You’ll recall this happened via the @NgModule declaration in the

app.module file. Listing 15.4 and figure 15.5 show the code definition of this component running in the

Pet Scrapbook.

Listing 15.3 The app.component.ts file defining an Angular component

import { Component } from "@angular/core";

@Component({ // #A

 selector: "my-app", // #A

 templateUrl: "app.component.html" // #A

}) // #A

export class AppComponent { }

#A Component declaration creates an HTML tag named my-app that will render the contents of the template

contained in app.component.html

When this component is loaded, the @Component declarative statement creates a new Angular

component named my-app, which when loaded will render the contents of the HTML file

app.component.html (shown in figure 15.5).

Figure 15.5 The component defined in app.component.ts of the Pet Scrapbook app.

The content of the app.component.html is the page that is loaded when the Pet Scrapbook Angular is

launched: an action bar is placed on the page, showing the text Home.

It’s straightforward to see how that the template’s contents are displayed in the NativeScript app, but

let’s dissect the component further. Angular components have two major parts: metadata and a template.

COMPONENT METADATA

The metadata file, app.component.ts, defines the settings for a component and tells Angular how to

process and use the component.

 Branstein / The NativeScript Book 380

NOTE The metadata of a component is also defined using a declarative TypeScript statement-like

module. You don’t need to know the details about this now, because we’ll take a closer look at creating

components in the next chapter.

COMPONENT TEMPLATE

The template part of an Angular component defines the UI or view code. In a traditional Angular app that

runs in a web browser, the template is just HTML code. In a NativeScript-with-Angular app, the template

is NativeScript XML view components, which we discussed previously such as StackLayout, Label, and

Button elements.

MOVING ON

And, that’s it! Now you know how a NativeScript-with-Angular app starts up. It’s a little different from a

vanilla NativeScript app, but that’s because we’re using Angular. As we continue to build the Pet Scrapbook

using Angular, we’ll be creating components for each of the pages that we created in previous chapters

like the home page and list view page.

If you’re feeling overwhelmed or confused, that’s ok. The first time we started using Angular, we felt

overwhelmed too. We’ll move slowly and guide you through each step, explaining along the way. And, if

you’re feeling that you need an Angular refresher, check out the Angular tutorial on http://angular.io or

one of Manning’s other books on Angular (like Angular 2 Development with TypeScript at

https://www.manning.com/books/angular-2-development-with-typescript).

15.6 Summary

In this chapter, you learned:

▪ How to create a NativeScript-with-Angular app

▪ How the structure of a NativeScript-with-Angular app differs from a vanilla NativeScript app

▪ How TypeScript is used when creating a NativeScript-with-Angular app

▪ How NativeScript and Angular work together

15.7 Exercise

Create a new NativeScript-with-Angular app named HelloAngular using the nativescript-template-ng-

tutorial template. Then, change the action bar to show Hello Angular!

15.8 Solutions

To create a new NativeScript-with-Angular app named HelloAngular using the nativescript-template-ng-

tutorial template, use the NativeScript CLI:

tns create HelloAngular --template nativescript-template-ng-tutorial

To change the action bar to show Hello Angular!, modify the app.component.ts file template element

(listing 15.4).

Listing 15.4 The app.component.ts file showing an action bar with the text Hello Angular!

 Branstein / The NativeScript Book 381

import { Component } from "@angular/core";

@Component({

 selector: "my-app",

 template: `

 <ActionBar title="Hello Angular!"></ActionBar>

 <!-- Your UI components go here -->

 `

})

export class AppComponent {

 // Your TypeScript logic goes here

}

 Branstein / The NativeScript Book 382

16
Using Angular components and routing

This chapter covers

▪ Creating Angular components

▪ Navigating between components with routing

In the last chapter, you learned how to create a NativeScript-with-Angular app and began to re-create

the Pet Scrapbook. We’ll be continuing to refine the Pet Scrapbook Angular by learning about Angular

components and routing, two core concepts that parallel the concepts of vanilla NativeScript: pages and

navigation.

In our experience, learning about Angular concepts on their own (without the context of a vanilla

NativeScript app) can be confusing, so we’ve taken the time to build on things you’ve already learned

about to help you quickly learn about Angular and how it’s used in a NativeScript-with-Angular app. Just

like the last chapter, if you haven’t walked-through the official QuickStart guide for Angular, we strongly

recommend you check it out at https://angular.io/docs/ts/latest/quickstart.html.

PLAY If you want to follow along in the Playground, we’re starting from the code we used in the last

chapter. Follow along at https://play.nativescript.org/?template=play-ng&id=GfqjRH.

16.1 Creating static components

As you’ll recall, you learned that the app.module.ts file is the entry point for NativeScript-with-Angular

apps. You also learned that Angular components are like NativeScript pages, but let’s dive a little deeper

into how components and pages are similar. Figure 16.1 shows the contents of an Angular component.

 Branstein / The NativeScript Book 383

Figure 16.1 Angular components have markup, style, and code.

Angular components comprise of three pieces: markup, styling, and code. The Angular-specific pieces

of a component are just like the vanilla NativeScript pieces of a page, but with implementation differences.

Angular components are built with HTML markup, CSS styling, and TypeScript code, and vanilla

NativeScript pages are built with XML markup, CSS styling, and JavaScript code.

NOTE You may have noticed that we said Angular code is written in TypeScript and NativeScript code

is written in JavaScript, but that’s not correct technically. Behind the scenes, all code that is run in a

vanilla NativeScript and NativeScript-with-Angular app is JavaScript. But, when you’re writing apps,

most people choose to write NativeScript-with-Angular apps with TypeScript, and vanilla NativeScript

apps with JavaScript. This trend is why we described components and pages with TypeScript and

JavaScript.

Figure 16.2 shows the implementation differences between Angular components and NativeScript

pages.

Figure 16.2 The differences between a NativeScript Page and Angular Component.

Writing the code for apps in different language variants isn’t the only code difference: the structure

and content of the code is different. The difference may be obvious to some, but we want to point it out

 Branstein / The NativeScript Book 384

to ensure we’re on the same page. The code within Angular components is Angular-specific, using Angular

constructs like the @Component declaration we saw in chapter 15 and in listing 16.1.

Listing 16.1 The app.component.ts file showing Angular constructs like the @Component

declaration

import { Component } from "@angular/core";

@Component({

 selector: "my-app",

 templateUrl: "app.component.html"

})

export class AppComponent { }

There is a final difference between Angular components and NativeScript pages in how the view

markup is written (HTML versus XML), and you’ll learn about it shortly. But it’s easier to teach you about

the difference if we’ve built an Angular component first. So, let’s tackle our first component (or page) of

the Pet Scrapbook Angular: the Home component.

16.1.1 Home component

Let’s start creating the Home component by adding the three files required for an Angular component. If

you’ve been following along, your app already has a home folder – this folder houses the Home

component. We’ll be reusing it, so there’s nothing left to do. If you didn’t use the blank template, create

a folder named home in the app folder.

TIP Angular apps have their own style guide for organizing modules, components, and other Angular

constructs. Per the official style guide, components should be placed in the app folder, and further

organized by subfolders with the name of the component. We’ll help you learn the basics of the Angular

style guide, but you should check it out for the specifics: https://angular.io/styleguide.

Create five files in the home folder: home-routing.module.ts, home.module.ts, home.component.html,

home.component.css, and home.component.ts.

TIP Per the Angular style guide, the three component-related files should be named with the

component’s name and a .component.html, .component.css, and .component.ts extensions. The .html

file contains the view markup, styling is in the .css file, and the .ts file contains the Angular-specific

component declaration written in TypeScript.

Figure 16.3 shows the resulting Pet Scrapbook Angular solution with the new files.

 Branstein / The NativeScript Book 385

Figure 16.3 The Home component files added to the Pet Scrapbook solution.

After adding the Home component files to the Pet Scrapbook Angular app, we’ll create the Home page

using Angular. Figure 16.4 shows the Home page in case you don’t remember.

Figure 16.4 The Home page of the Pet Scrapbook app that will be replicated using the Home component in Angular.

UPDATING THE VIEW MARKUP

Start by copying the XML view code from the Pet Scrapbook app and placing it in the

home.component.html file. Listing 16.2 shows the contents of home.component.html.

 Branstein / The NativeScript Book 386

NOTE Don’t forget to copy the images from the images folder into your app folder before continuing.

NOTE You may have noticed that we made some changes to the markup after copying it to home.html.

Specifically, we removed the page UI element (and we’ll explain why later). We also removed the

databinding for the title and footer UI elements. We did this to simplify the Home component. Don’t

worry though, we’ll introduce you to Angular data binding later in the chapter.

Listing 16.2 The home.component.html file showing the UI markup of the Home component

<ScrollView> // #A

 <StackLayout>

 <Label class="h1 text-center m-y-10" text="Pet Scrapbook"></Label> // #B

 <Image src="~/images/home.png"></Image>

 <Label class="footnote text-center m-y-10" text="Brosteins ©2018"></Label> // #B

 <StackLayout orientation="horizontal" horizontalAlignment="center">

 <Button class="btn btn-primary btn-rounded-sm btn-active m-r-20"

 text="About">

 </Button>

 <Button class="btn btn-primary btn-rounded-sm btn-active m-l-20"

 text="Continue">

 </Button>

 </StackLayout>

 </StackLayout>

</ScrollView>

#A Page UI element removed from around scroll view

#B Data binding removed for simplicity

Earlier in this chapter, we mentioned there is another difference between Angular component view

markup and vanilla NativeScript view markup. Angular component view code is a blend of HTML/XML

NativeScript-iness markup, not XML. Huh? Yeah. If you’re confused, we understand. We were confused

at first too. Let us explain.

Angular is a generic framework for building apps, and it can run in all sorts of places. For example,

Angular can run in the browser (Chrome, Firefox, Edge, and others) or a mobile app (like NativeScript).

Regardless of where it runs, its view code must be written in a language and syntax that’s recognizable

by the underlying platform. This means that in a browser, the view code must be written in HTML (because

browsers know how to parse and render HTML to a web page). In a NativeScript app, view code is written

in HTML/XML-ish NativeScript syntax that a NativeScript app can parse and render into native app UI

elements.

More specifically, Angular-component view code (in NativeScript-with-Angular apps) isn’t HTML or

XML, but it resembles both very closely. It’s not web-based HTML markup because it doesn’t use h1, h2,

h3, div, p, form, and input HTML elements, and it’s not exactly NativeScript XML because the data binding

syntax used by Angular isn’t XML-compliant.

So, what is it?

There’s not a great name for the view markup used in NativeScript-with-Angular app, so let’s call it

what it is: markup.

 Branstein / The NativeScript Book 387

NOTE The NativeScript community has discussed naming this special markup NativeScript HTML or

NSML, but it never really felt right. Plus, calling it NSML would lead some to name the view file with an

extension of .nsml, breaking code editor Intellisense support you get for free when you name your view

files with an extension of .html.

Phew! That’s a lot to take in and understand about a minor technicality, so if you’re feeling lost, here’s

all you need to know about creating Angular component views in NativeScript:

▪ You write HTML/XML-like markup using NativeScript UI elements.

▪ Markup doesn’t need to include the page UI element.

▪ Even though the markup isn’t HTML, it’s placed in a file with an extension of .html because many

code editors have intellisense support for Angular apps that only works for files with an extension

of .html.

ADDING CSS STYLES

Like vanilla NativeScript apps, NativeScript-with-Angular apps support both global and page-specific

styling. The app.css file contains the global CSS definitions, and the component-specific .css files have

CSS specific to a component. We don’t have component-specific CSS for the Home component, so we

don’t need to make any modifications to the home.css file. But, we do have some global styling changes

to review before we move on.

In listing 16.2, many of the UI elements have CSS classes using NativeScript themes. For example:

<Button class="btn btn-primary btn-rounded-sm btn-active m-r-20"

 text="About"></Button>

In a NativeScript-with-Angular app, it’s easy to forget that the underlying app is a NativeScript app,

and that means you can still use vanilla NativeScript things like themes.

TIP To add support for themes in a NativeScript-with-Angular app, import the theme CSS file in the

app.css file, just like you would do in a vanilla NativeScript app.

Look at the app.css file and you’ll see the light theme already imported: @import "nativescript-

theme-core/css/core.light.css";.

NOTE The template used to create the Pet Scrapbook Angular app, tns-template-blank-ng, includes

the nativescript-theme-core npm package, so we didn’t have to add the CSS import statement to the

app.css file. But, if we hadn’t used this theme, we would have needed to add the theme via npm with

the following command: npm install nativescript-theme-core --save. You can also use

Sidekick to quickly install the theme package. If you’re using the Playground, the theme package is

always included in your starter app, so you don’t have to add it manually.

ADDING THE ANGULAR-SPECIFIC COMPONENT CODE

The final step to adding the Home component is to define the Angular-specific code in the

home.component.ts file, by adding the contents of listing 16.3 to the file.

 Branstein / The NativeScript Book 388

Listing 16.3 The home.component.ts file showing the Angular component declaration code

import { Component } from "@angular/core"; // #A

@Component({ // #B

 selector: "ps-home", // #C

 moduleId: module.id,

 templateUrl: "./home.component.html", // #D

 styleUrls: ["./home.component.css"] // #E

})

export class HomeComponent { // #F

}

#A Angular Component import is needed to reference @Component declaration

#B Defines the component

#C Unique identifier for the component

#D Path to the UI markup file

#E Path to the CSS styling file

#F Exports the component so Angular can use it

There’s a lot of new things to talk about in listing 16.4, so we’ll guide you through each one. At the

top is the import statement pulling in the Component class definition from the @angular/core npm

package.

TIP Every Angular component you create will require the Component class to be imported from the

@angular/core package. So, get used to typing it! If you’re using Visual Studio Code as an editor,

there’s a great extension written by Nathan Walker called NativeScript + Angular Snippets that can

help you create components using snippets. Check it out at

https://marketplace.visualstudio.com/items?itemName=wwwalkerrun.nativescript-ng2-snippets.

After importing the Component class definition, it is used to declare the Home component. You’ll recall

this syntax (called directive syntax) from the last chapter when we looked at the app.component.ts file.

We’re using the same syntax in the Home component with the @Component({...}) code lines.

TIP We like to think of directives like calling a function because when they’re defined using the

@Component({...}) syntax, they can accept a variety of parameters. We are using only a subset

of parameters that the @Component can take. A full listing of the parameters is available in the official

Angular documentation at: https://angular.io/docs/ts/latest/api/core/index/Component-

decorator.html

When creating the Home component, we passed four values into it: a selector, moduleId, templateUrl,

and styleUrls. The first parameter is the selector. The selector parameter is used to identify the

component. We like to think of it as the identifier of a component. It also defines a custom markup tag

that can be used to represent the component’s contents. We’ll be coming back to talk about the selector

later when we implement page navigation, so stay tuned.

 Branstein / The NativeScript Book 389

TIP Component selectors don’t have to be unique within your app, but we find it easier to uniquely

name them. For the purposes of this book, we’ll use unique names. The Angular style guide also

recommends using custom prefixes for component selectors. For example, we used ps-home for our

selector, which stands for Pet Scrapbook Home component. We’ll continue to use the ps- prefix on our

components throughout the remainder of this book. For more information on why prefixes are

encouraged, see https://angular.io/guide/styleguide#custom-prefix-for-components.

The last three component directive parameters are used to define the module this component belongs

to (moduleId), location of the UI template (templateUrl) and CSS file (styleUrls). When they’re

defined, they tell Angular where it can find the files.

The final line of code (export class HomeComponent({})) is the Home component class exported

so Angular can create this component. We have named our component the HomeComponent and if we

had any business logic, then we would build it into the HomeComponent class, which we will be doing a

bit later in this chapter. It’s not important that you know how this is created, but just that it needs to be

included in the component declaration.

TIP Per the Angular style guide, exported component class declaration should be named with the

component’s name followed by Component. For example, the Home component should be declared as

HomeComponent. Note the capitalization of both Home and Component.

Wow, that was a lot, and sometimes, it can be tough to remember everything that needs to go into a

component.

TIP If you ever get tired of typing component declarations over and over, use the power of your code

editor and create shortcuts (or snippets) to make creating components easier. Also, if you’re using

Visual Studio Code, check out the NativeScript + Angular Snippets extension at

https://marketplace.visualstudio.com/items?itemName=wwwalkerrun.nativescript-ng2-snippets. I

know we’ve said it once already, but it’s worth installing!

16.1.2 Loading the Home component

You’ll recall from the previous chapter that the Pet Scrapbook Angular app started with a blank screen

with "Home" text in the action bar (figure 16.5).

 Branstein / The NativeScript Book 390

Figure 16.5 The Pet Scrapbook starts by showing a blank screen with Home text in the action bar.

Now that we have finished re-creating the Home page as a component, we should display it when the

app launches. In a vanilla NativeScript app, we’d change the app.js file to load the home page, but this is

Angular. As you learned in the previous chapter, the app.module.ts file loads the starting component of a

NativeScript app via the bootstrap parameter of the @NgModule directive (listing 16.4).

Listing 16.4 The app.module.ts file @NgModule directive showing AppComponent as the bootstrap

component

import { NgModule, NgModuleFactoryLoader, NO_ERRORS_SCHEMA } from "@angular/core";

import { NativeScriptModule } from "nativescript-angular/nativescript.module";

import { AppRoutingModule } from "./app-routing.module";

import { AppComponent } from "./app.component";

@NgModule({

 bootstrap: [

 AppComponent //#A

],

 imports: [

 NativeScriptModule,

 AppRoutingModule

],

 declarations: [

 AppComponent

],

 schemas: [

 NO_ERRORS_SCHEMA

]

})

export class AppModule { }

#A App component will be used as the first page

 Branstein / The NativeScript Book 391

NOTE Hold on! You may be thinking the Home component is displayed when the app launches – and

you’re right. There is some clever misdirection going on here that we don’t want to fully explain – yet.

For now, trust us and remember when the App component loads, the Home component loads and is

displayed.

Even though we’re not changing anything in the App module, there are three important things to point

out: the App component is imported, then included in the app via the @NgModule declarations property,

and finally set as the startup component via the bootstrap property.

NOTE The declarations parameter is an array of components in the app. You can think of adding the

components here as defining them in a public namespace for the entire app. The array is used by

Angular, so we can use components in our app and even use components within other components.

If you’re just getting started with Angular, importing, declaring, and changing the bootstrap parameter

may have seemed like a lot of ceremony. But, the ceremony is part of how Angular works. In fact, the

pattern of importing components and adding them to the @NgModule directive is something you’ll do

often in Angular apps. Understanding why Angular uses the @NgModule declaration is outside the scope

of this book. Just remember that whenever you create a new component, import and declare it in a module

file. If you’re interested in the details, you can read more about modules at

https://angular.io/docs/ts/latest/guide/ngmodule.html.

TIP When you create a component, don’t forget to import and declare it in a module file.

WARNING Don’t forget the images! Before we run the Angular app, don’t forget to grab the images

from the vanilla NativeScript app and place them in the images folder of the NativeScript-with-Angular

version.

Now that you’ve learned a little more about how Angular loads the Home component and starts your

app, run the app and you’ll see the Home component loaded on startup (figure 16.6). It’s the same view

as the vanilla NativeScript app, except built with Angular!

 Branstein / The NativeScript Book 392

Figure 16.6 The Home page of the Pet Scrapbook Angular app written using NativeScript-with-Angular.

RECAPPING ANGULAR COMPONENTS

Nice work. Angular components can be tricky because there’s a lot to remember. We’ll be creating several

components throughout the rest of the book, so it’s good to get familiar with them right now. Just to

recap, you’ll need to remember these five things about Angular components as we continue:

1. A component is the same as a vanilla NativeScript page.

2. Each component has three files: view markup ({name}.component.html), styling

({name}.component.css), and code definition ({name}.component.ts).

3. A component’s three files should be placed in a folder named the same as the component. For

example, the Home component goes in the home folder.

4. The component’s code definition file officially defines the component by passing in the selector,

templateUrl, and styleUrls parameters to the @Component directive.

5. After creating a component, don’t forget to import and declare it in a module file.

16.2 Demystifying how the Home component was loaded

In the previous section, we were a bit coy when describing how the Home component was loaded. That’s

because we didn’t want to introduce you to too many things at once. Now that you’ve learned a little

about Angular components, it’s time to introduce you to the way you navigate between components: the

Angular router.

DEFINITION The router allows you to navigate from one page to another in a NativeScript-with-Angular

app.

The concept of a router and routing between pages is borrowed from the web, where various pages of

a web app have a unique URL, for example, http://foo.com/foo, http://foo.com/bar, and

 Branstein / The NativeScript Book 393

http://foo.com/foo#bar. This allows users to either enter a URL, click a link on a page, or use the forward

and back buttons to navigate between pages with unique addresses.

You may be wondering how this relates to NativeScript-with-Angular apps. The official Angular

documentation on routing and navigation sums it up nicely by stating that Angular borrows from the

navigation concepts of the web.

The Angular router "...can interpret a browser URL [or URL fragment] as an instruction

to navigate to a client-generated view...you can bind the router to links on a page and

it will navigate to the appropriate application view when the user clicks a link. And the

router logs activity in the browser's history journal so the back and forward buttons

work as well."

Angular documentation: https://angular.io/docs/ts/latest/guide/router.html

NOTE Providing an abstraction over navigation concepts allows Angular to be multi-platform and not

be locked into the web. In HTML apps, the router interacts with the browser’s URL and HTTP requests

for pages, but in NativeScript-with-Angular apps, there is no browser or URL. Instead, the router

interacts with the native platform’s history.

It’s not important for you to know much more than this to use Angular routes, so we’re not diving

deeper into how the router works and how it interacts with your app. But, we will be diving into how the

router is used to load the Home component. Before we explain this, you may be interested in the finer

points of routing, so check out the official documentation at

https://angular.io/docs/ts/latest/guide/router.html.

16.2.1 Loading the Home component

You’ll recall that when the app loads, the App component is loaded because it is set as the bootstrap value

in the app.module.ts file (listing 16.5).

Listing 16.5 The app.module.ts file @NgModule directive showing AppComponent as the bootstrap

component

import { NgModule, NgModuleFactoryLoader, NO_ERRORS_SCHEMA } from "@angular/core";

import { NativeScriptModule } from "nativescript-angular/nativescript.module";

import { AppRoutingModule } from "./app-routing.module";

import { AppComponent } from "./app.component";

@NgModule({

 bootstrap: [

 AppComponent //#A

],

 imports: [

 NativeScriptModule,

 AppRoutingModule

],

 declarations: [

 Branstein / The NativeScript Book 394

 AppComponent

],

 schemas: [

 NO_ERRORS_SCHEMA

]

})

export class AppModule { }

#A App component will be used as the first page

But, what happens when the App component is loaded? To find out, let’s look at the

app.component.html file in listing 16.6.

Listing 16.6 The app.component.html file showing a routing control

<page-router-outlet></page-router-outlet>

As you can see, there is a single piece of markup in the app.component.html file.

DEFINITION The page router outlet is an Angular component that knows how to dynamically load other

components when you navigate to them.

This may seem confusing but remember Angular is a single-page application (SPA) framework. In

NativeScript-with-Angular apps, the app module dynamically loads new components and places them into

the UI markup area defined by the page router outlet. Figure 16.9 shows how this works with multiple

components

Figure 16.7 The page router outlet component dynamically loads other components into it when navigated/routed-to.

 Branstein / The NativeScript Book 395

There’s a lot going on in figure 16.7, so let’s break it down. On the far left is a visualization of a

NativeScript-with-Angular app. The outer-most layer is the app itself, running NativeScript-with-Angular.

When the app loads, the app module is loaded, making the second layer. The app module then loads the

app component, which contains the <page-router-outlet></page-router-outlet> component.

When the Home component is navigated-to (or routed-to), the content of the page router outlet is replaced

with the Home component’s UI markup. Then, when another component is routed-to (for example the

List component), its UI markup is dynamically loaded into the page router outlet.

NOTE Look back at the Home component markup in home.component.html. You’ll notice it doesn’t

include the page element. This is possible because the <page-router-outlet></page-router-outlet>

markup emits the page element and because of the dynamic SPA nature of Angular.

Now we’ve covered how the page router outlet dynamically loads components, let’s return to the App

module and see how the Home component is loaded in the app-routing.module.ts file (listing 16.7).

Listing 16.7 The app-routing.module.ts file associates an array of routes with the App module

import { NgModule } from "@angular/core";

import { Routes } from "@angular/router";

import { NativeScriptRouterModule } from "nativescript-angular/router";

const routes: Routes = [//#A

 { path: "", redirectTo: "/home", pathMatch: "full" }, //#A

 { path: "home", loadChildren: "./home/home.module#HomeModule" } //#A

]; //#A

@NgModule({ //#B

 imports: [NativeScriptRouterModule.forRoot(routes)], //#B

 exports: [NativeScriptRouterModule] //#B

}) //#B

export class AppRoutingModule { }

#A A list of routes indicating a URI path and module/component destination to load when the path is

navigated/routed to

#B Linking the list of routes to the current module

Upon closer investigation, the app-routing.module.ts file associates a list of routes with actions to take.

In listing 16.7, you’ll notice the first route { path: "", redirectTo: "/home", pathMatch:

"full" }. This route acts as a default route (because the path is empty). It tells Angular to redirect

the app to the /home route when the empty path is routerd to. The second route { path: "home",

loadChildren: "./home/home.module#HomeModule" } defines the home path and loads a second

module (the HomeModule class located in ./home/home.module.ts) when it is routed to.

So, let’s put this all together in a series of steps. When the app loads:

1. The App module loads the app-routing.module.ts file, registering the default route and the home

route.

2. The App module’s bootstrap code loads the App component

3. The App component loads the app.component.html file, which contains the <page-router-

outlet> markup.

 Branstein / The NativeScript Book 396

4. The <page-router-outlet> markup instructs Angular to route to the default route registered

with the module.

5. The default route registered redirects to the home route.

6. The home route loads the Home module and navigates to its default route.

NOTE Wow…that’s a lot of steps. If you’ve had trouble following along, that’s ok. You won’t have to

create these steps manually – that’s why we’ve used a template.

Now that you’ve learned how the Home module is loaded, let’s take a deeper look at the Home module

in listing 16.8.

Listing 16.8 The home.module.ts file is like the app.module.ts file

import { NgModule, NO_ERRORS_SCHEMA } from "@angular/core";

import { NativeScriptCommonModule } from "nativescript-angular/common";

import { NativeScriptUISideDrawerModule } from "nativescript-ui-sidedrawer/angular";

import { NativeScriptUIListViewModule } from "nativescript-ui-listview/angular";

import { NativeScriptUICalendarModule } from "nativescript-ui-calendar/angular";

import { NativeScriptUIChartModule } from "nativescript-ui-chart/angular";

import { NativeScriptUIDataFormModule } from "nativescript-ui-dataform/angular";

import { NativeScriptUIAutoCompleteTextViewModule } from "nativescript-ui-

autocomplete/angular";

import { NativeScriptUIGaugeModule } from "nativescript-ui-gauge/angular";

import { NativeScriptFormsModule } from "nativescript-angular/forms";

import { HomeRoutingModule } from "./home-routing.module";

import { HomeComponent } from "./home.component";

@NgModule({

 imports: [

 NativeScriptUISideDrawerModule,

 NativeScriptUIListViewModule,

 NativeScriptUICalendarModule,

 NativeScriptUIChartModule,

 NativeScriptUIDataFormModule,

 NativeScriptUIAutoCompleteTextViewModule,

 NativeScriptUIGaugeModule,

 NativeScriptCommonModule,

 HomeRoutingModule,

 NativeScriptFormsModule

],

 declarations: [

 HomeComponent

],

 schemas: [

 NO_ERRORS_SCHEMA

]

})

export class HomeModule { }

 Branstein / The NativeScript Book 397

Well, this looks familiar – just like the App module, except there are a few more classes imported. For

now, you can ignore the numerous import statements, and focus on the module’s routing import:

import { HomeRoutingModule } from "./home-routing.module";

This statement loads the HomeRoutingModule class, then imports the class into the module via the

@NgModule declaration:

@NgModule({ imports: [...HomeRoutingModule ...],

And, if we investigate the HomeRoutingModule class, we’ll see that it registers a default route that

loads the Home component (listing 16.9).

Listing 16.9 The home-routing.module.ts file registers a default route to load the Home component

import { NgModule } from "@angular/core";

import { Routes } from "@angular/router";

import { NativeScriptRouterModule } from "nativescript-angular/router";

import { HomeComponent } from "./home.component";

const routes: Routes = [// #A

 { path: "", component: HomeComponent } // #A

]; // #A

@NgModule({

 imports: [NativeScriptRouterModule.forChild(routes)],

 exports: [NativeScriptRouterModule]

})

export class HomeRoutingModule { }

#A The Home module registers a default route that loads the Home component

And that’s it! You’ve just learned how the App module bootstraps the App component, which in turn

routes to the Home module and loads the Home component. Keep these steps (and the coding files/pattern

you’ve seen here in mind, because we’ll be using this same pattern throughout this chapter as we create

new pages).

NOTE You may have picked up on something subtle in how the default template uses routing to load

a second module (the Home module). Furthermore, you may be thinking that loading a second module

seems like a lot of work. After all, you don’t need a second module to load the Home component – the

Home component could have been imported and loaded directly in the App component. The in-depth

story here is beyond the focus of this book, but let’s say that in some cases, separating out logical

areas or pages of your app into multiple modules can make NativeScript-with-Angular apps more

efficient to startup. Because of this efficiency benefit, we’ll continue to follow the multiple module

pattern throughout this book.

 Branstein / The NativeScript Book 398

16.3 Navigating between components with routing

Now that you’ve seen how routing works between the App and Home modules and components, let’s put

that knowledge to use and create your second component: the List component. The List component

parallels the List page of the Pet Scrapbook, which displayed a list of the various scrapbook pages (figure

16.8).

Figure 16.8 The list page of the Pet Scrapbook, which will be re-created as a List component.

After creating the component, you’ll use the Angular routing system to navigate between the Home

and List components.

NOTE In this chapter, we won’t be re-creating the entirety of the List page. Instead, we’ll create a

mostly-blank list page, and add to it in the next chapter.

16.3.1 Page navigation in NativeScript-with-Angular

In the last section, you learned the basics of how Angular uses the routes to load the Home module and

route to the Home component when the app loads. Let’s expand this and learn how to use the Angular

router to navigate to the List component.

DEFINING APP ROUTES

To start using the router in the Pet Scrapbook Angular app, there are a few steps we’ll need to take:

▪ Step 1: Define the routable module and component

▪ Step 2: Configure the app module to route to the new module

▪ Step 3: Add routing logic to the Home component to navigate to the List component

It’s ok if you don’t understand completely the steps we just described. We’ll address each one as we

proceed.

STEP 1: DEFINE THE ROUTABLE MODULE AND COMPONENT

The first step is to define the module and components within our app that will be considered routable.

 Branstein / The NativeScript Book 399

DEFINITION Routable modules and components can be navigation destinations in a NativeScript-with-

Angular app. You’ve already seen this with the Home module and Home components. Although the only

components you’ve seen so far are routable components, not every component is a routable

component. It’s possible to create components that are used as subcomponents inside another

component. Often, subcomponents will never be displayed alone, so there’s no need to navigate to

them directly.

Start by creating the List module, routing, and component. Add a list folder underneath the app folder,

then add the five files you’ll need for a module, module routing, and component: list.module.ts, list-

routing.module.ts, list.component.html, list.component.css, and list.component.ts. Figure 16.9 shows the

contents of the list folder after adding the files.

Figure 16.9 The Pet Scrapbook Angular app after adding the List module, module routing, and component files to the

project.

After adding the files, let’s flesh out the component by adding the module definition, module routing

definition, and some basic markup to the list.component.html file. Then, declare the component in the

list.component.ts file. Our component won’t be using any custom CSS right now, so we’ll leave it alone.

TIP Try creating these files yourself, without looking ahead by using the files in the home folder as a

template.

The list.module.ts file defines the List module, importing the module routing definition and the List

component (listing 16.10).

Listing 16.10 The list.module.ts file declares the List module and imports the module’s routing and

List component

import { NgModule, NO_ERRORS_SCHEMA } from "@angular/core";

import { NativeScriptCommonModule } from "nativescript-angular/common";

 Branstein / The NativeScript Book 400

import { ListRoutingModule } from "./list-routing.module";

import { ListComponent } from "./list.component";

@NgModule({

 imports: [

 ListRoutingModule,

 NativeScriptCommonModule

],

 declarations: [

 ListComponent

],

 schemas: [

 NO_ERRORS_SCHEMA

]

})

export class ListModule { }

NOTE You’ll notice that this isn’t exactly like the Home module. We chose to remove some of the

imported classes that are extraneous for our basic app.

WARNING You may have also noticed that we imported NativeScriptCommonModule into the List

module. You should load this into every sub-module, as it performs various bootstrapping functions for

the module, such as rendering of the Action Bar. For more details see

https://github.com/NativeScript/NativeScript/issues/5025.

The List module’s routing definition is located in the list-routing.module.ts file (listing 16.11), and

defines a default route to load the List Component.

Listing 16.11 The list-routing.module.ts file declares the routes for the List module

import { NgModule } from "@angular/core";

import { Routes } from "@angular/router";

import { NativeScriptRouterModule } from "nativescript-angular/router";

import { ListComponent } from "./list.component";

const routes: Routes = [

 { path: "", component: ListComponent }

];

@NgModule({

 imports: [NativeScriptRouterModule.forChild(routes)],

 exports: [NativeScriptRouterModule]

})

export class ListRoutingModule { }

The list.component.html file has a single UI element: <ActionBar title="Pet

Scrapbook"></ActionBar>. And finally, the list.component.ts file defines the List component (listing

16.12).

 Branstein / The NativeScript Book 401

Listing 16.12 The list.component.ts file declares the List component

import { Component, OnInit } from "@angular/core";

@Component({

 selector: "ps-list",

 moduleId: module.id,

 templateUrl: "./list.component.html",

 styleUrls: ['./list.component.css']

})

export class ListComponent implements OnInit {

 constructor() {

 }

 ngOnInit(): void {

 }

}

STEP 2: CONFIGURE THE APP MODULE TO ROUTE TO THE NEW MODULE

The second change will be made to the app-routing.module.ts file. We’ll update the routes array to include

a route for the List module (listing 16.13).

Listing 16.13 The app-routing.module.ts file with the List module route added

import { NgModule } from "@angular/core";

import { Routes } from "@angular/router";

import { NativeScriptRouterModule } from "nativescript-angular/router";

const routes: Routes = [

 { path: "", redirectTo: "/home", pathMatch: "full" },

 { path: "home", loadChildren: "./home/home.module#HomeModule" },

 { path: "list", loadChildren: "./list/list.module#ListModule" },

];

@NgModule({

 imports: [NativeScriptRouterModule.forRoot(routes)],

 exports: [NativeScriptRouterModule]

})

export class AppRoutingModule { }

STEP 3: ADD ROUTING LOGIC TO THE HOME COMPONENT TO NAVIGATE TO THE LIST COMPONENT

The final step is to add routing logic into the Home component and to the List component. In a vanilla

NativeScript app, we would add a tap event to the UI markup of the home page, then add a tap-event

handler to the JavaScript. NativeScript-with-Angular apps use the same process, but with slightly different

syntax. We’ll cover the syntax difference in the next chapter when we cover data binding. Right now, you

need to know that by adding the (tap) attribute, Angular knows to call the onContinueTap() function

when the button is tapped.

 Branstein / The NativeScript Book 402

WARNING We’ll be using Angular data binding in the next several listings, even though you haven’t

learned about it yet. For now, just follow along. We’ll cover data binding in the next chapter with greater

detail.

Start by adding the tap event to the Home component’s UI by updating home.component.html. Change

the Continue button’s UI markup by adding the (tap)="onContinueTap()" attribute with the following

code:

<Button class="btn btn-primary btn-rounded-sm btn-active m-l-20"

 text="Continue" (tap)="onContinueTap()"></Button>

Next, let’s define the onContinueTap() function by updating the home.component.ts file. Listing

16.14 shows the changes.

Listing 16.14 The home.component.ts file updated to navigate to the List component when the

Continue button is tapped

import { Component } from "@angular/core";

import { RouterExtensions } from "nativescript-angular/router";

@Component({

 selector: "ps-home",

 moduleId: module.id,

 templateUrl: "./home.component.html",

 styleUrls: ["./home.component.css"]

})

export class HomeComponent {

 constructor(private routerExtensions: RouterExtensions) {

 }

 onContinueTap(): void {

 this.routerExtensions.navigate(["list"]);

 }

}

#A Import the NativeScript-Angular router

#B Load the Angular router into the HomeComponent class

#C Handle the tap event and navigate to the List component using the router

At the top of the Home component, we import the Angular router, then add a router reference to the

constructor of the Home component. After adding the references, the tap-event handler is defined so it

navigates to the list route.

NOTE The navigate() function is part of the nativescript-angular module and takes an array of

values. The first value is the name of the route. Additional values can be supplied, but we’re not going

to cover those values until the next chapter. If you’d like to learn more now, check out

https://docs.nativescript.org/core-concepts/angular-navigation.

 Branstein / The NativeScript Book 403

That should do it. Run the Pet Scrapbook Angular app in your simulator/emulator or in the Playground

and tap the Continue button, which will navigate from the Home component to the List component, as

shown in figure 16.10.

Figure 16.10 When the Continue button is tapped, the Pet Scrapbook routes to the List component.

Great work! You’ve learned the basics of Angular components and routing, while re-creating several

key pages of the Pet Scrapbook: home and list. In the next chapter, you’ll learn about data binding, finish

the List component, and create the details component.

PLAY You can find the final version of the code presented in this chapter in the Playground. Run it on

your own device by visiting https://play.nativescript.org/?template=play-ng&id=GfqjRH&v=29.

16.4 Summary

In this chapter, you learned:

▪ Angular components have three pieces: a view (written in UI markup), styling (CSS), and code

(TypeScript)

▪ Components must be declared in the app module

▪ The <page-router-outlet></page-router-outlet> loads the default route when the app

starts, as defined in the app module by calling

NativeScriptRouterModule.forRoot(routes).

16.5 Exercise

Using your knowledge of NativeScript and Angular learned in this chapter, add a new component named

about, and navigate to the about component when the Home component About button is tapped.

16.6 Solutions

There are six steps to creating an about component and navigating to it when the About button is tapped

on the Home component:

 Branstein / The NativeScript Book 404

▪ Step 1: Create the about module and component files

▪ Step 2: Add UI markup to the about component

▪ Step 3: Define the about module and component code

▪ Step 4: Add the about module route to the app module

▪ Step 5: In the Home component’s UI markup, add a tap event to the About button

▪ Step 6: Handle the About button’s tap event, navigating to the about route

16.6.1 Step 1: Create the about module and component files

Create a folder named about in the app folder. Add five files to the about folder: about.module.ts, about-

routing.module.ts, about.component.html, about.component.css, and about.component.ts.

16.6.2 Step 2: Add UI markup to the about component

Add the following to the about.component.html file. We didn’t define the UI for the about page in the

vanilla NativeScript app, so feel free to put in any content you wish. We added a label, just so you know

the navigation worked.
<StackLayout>

 <Label text="About the Pet Scrapbook"></Label>

</StackLayout>

16.6.3 Step 3: Define the about module and component code

Add the contents of listing 16.15 to the about.module.ts file.

Listing 16.15 The about.module.ts file

import { NgModule, NO_ERRORS_SCHEMA } from "@angular/core";

import { NativeScriptCommonModule } from "nativescript-angular/common";

import { AboutRoutingModule } from "./about-routing.module";

import { AboutComponent } from "./about.component";

@NgModule({

 imports: [

 AboutRoutingModule,

 NativeScriptCommonModule

],

 declarations: [

 AboutComponent

],

 schemas: [

 NO_ERRORS_SCHEMA

]

})

export class AboutModule { }

Add the contents of listing 16.16 to the about.component.ts file.

 Branstein / The NativeScript Book 405

Listing 16.16 The about.component.ts file, containing the UI markup for the about component

import { Component, OnInit } from "@angular/core";

@Component({

 selector: "ps-about",

 moduleId: module.id,

 templateUrl: "./about.component.html",

 styleUrls: ['./about.component.css']

})

export class AboutComponent implements OnInit {

 constructor() {

 }

 ngOnInit(): void {

 }

}

Add the contents of listing 16.17 to the about-routing.module.ts file.

Listing 16.17 The about-routing.module.ts file, containing the routing logic for the about

component

import { NgModule } from "@angular/core";

import { Routes } from "@angular/router";

import { NativeScriptRouterModule } from "nativescript-angular/router";

import { AboutComponent } from "./about.component";

const routes: Routes = [

 { path: "", component: AboutComponent }

];

@NgModule({

 imports: [NativeScriptRouterModule.forChild(routes)],

 exports: [NativeScriptRouterModule]

})

export class AboutRoutingModule { }

16.6.4 Step 4: Add the about module route to the app module

Update the app-routing.module.ts file to include a route for the about module, as shown in listing 16.18.

Listing 16.18 The app.routing.ts file updated to include a route for the about module

import { NgModule } from "@angular/core";

import { Routes } from "@angular/router";

import { NativeScriptRouterModule } from "nativescript-angular/router";

const routes: Routes = [

 { path: "", redirectTo: "/home", pathMatch: "full" },

 { path: "home", loadChildren: "./home/home.module#HomeModule" },

 { path: "list", loadChildren: "./list/list.module#ListModule" },

 { path: "about", loadChildren: "./about/about.module#AboutModule" },

];

 Branstein / The NativeScript Book 406

@NgModule({

 imports: [NativeScriptRouterModule.forRoot(routes)],

 exports: [NativeScriptRouterModule]

})

export class AppRoutingModule { }

16.6.5 Step 5: In the Home component’s UI markup, add a tap event to the About button

Add a tap-event handler to the About button on the Home component (home.html):

<Button class="btn btn-primary btn-rounded-sm btn-active m-r-20"

 text="About" (tap)="onAboutTap()"></Button>

16.6.6 Step 7: Handle the About button’s tap event, navigating to the about route

Add the tap-event handler to the Home component code file, as shown in listing 16.19.

Listing 16.19 The home.component.ts file updated to navigate to the about component when the

About button is tapped

import { Component } from "@angular/core";

import { RouterExtensions } from "nativescript-angular/router";

@Component({

 selector: "ps-home",

 moduleId: module.id,

 templateUrl: "./home.component.html",

 styleUrls: ["./home.component.css"]

})

export class HomeComponent {

 constructor(private routerExtensions: RouterExtensions) {

 }

 onContinueTap(): void {

 this.routerExtensions.navigate(["list"]);

 }

 onAboutTap(): void {

 this.routerExtensions.navigate(["about"]);

 }

}

 Branstein / The NativeScript Book 407

17
Angular databinding and services

This chapter covers

▪ Implementing databinding in Angular

▪ Services in Angular

▪ Navigating using modal dialogs

In the previous chapter, you continued building the NativeScript-with-Angular version of the Pet

Scrapbook by adding the Home and List components. You also learned how Angular routing works and

used the <page-router-outlet></page-router-outlet> to dynamically load the List component.

There’s a lot to cover in this chapter, but we’re going to approach it just like we did with the original

Pet Scrapbook app. We’ll start by introducing you to how Angular databinding works, teaching you one-

way binding, event binding, and then two-way binding. Then, you’ll learn how services are created and

used in an Angular app. Finally, we’ll finish the chapter by teaching you how to open components as modal

dialogs

Let’s get started!

17.1 Databinding with Angular

In chapter 8, we described databinding as the process of linking together JavaScript objects and UI

elements. In a vanilla NativeScript app, the JavaScript object we were binding to was an observable,

loaded from the data/observable NativeScript core module. In the UI layer, UI element attributes were

linked with NativeScript’s mustache syntax. For example, to bind the name property of an observable to

the text attribute of a label element you would use: <Label text="{{ name }}" />.

The same concepts of binding a code object to UI elements still apply in NativeScript-with-Angular

apps. In general, the differences come down to databinding syntax in the UI and the type of JavaScript

object you bind to. We’re not going to go into the details of the differences right now, but we’ll explore

them as you learn how Angular databinding works.

Let’s start our exploration by revisiting the List component.

 Branstein / The NativeScript Book 408

17.1.1 Adding one-way databinding to the List component

When we left the List component in the last chapter, it was shell only, created with the purpose of having

a navigation destination to use while you learned about routing. As a reminder, figure 17.1 shows what

we’re starting with.

Figure 17.1 At the end of chapter 16, the List component UI markup contains only an action bar at the top.

MODIFYING THE LIST COMPONENT CODE LAYER

Let’s start from the List component’s code layer first, defining the object that we will bind to in the UI

layer. You’ll recall that the list page was bound to an observable array in the vanilla NativeScript app. In

NativeScript-with-Angular apps, it’s a bit easier because we can use a simple TypeScript array as the

databinding source. Listing 17.1 shows the updated list.component.ts file, using an array to store

scrapbook pages.

Listing 17.1 list.component.ts file with an array added for the databinding source

import { Component, OnInit } from "@angular/core";

import { Page } from "../models/page"; // #A

@Component({

 selector: "ps-list",

 moduleId: module.id,

 templateUrl: "./list.component.html",

 styleUrls: ['./list.component.css']

})

export class ListComponent implements OnInit {

 pages: Array<Page>; // #B

 constructor() {

 }

 ngOnInit(): void {

 }

}

 Branstein / The NativeScript Book 409

#A Import a class to represent individual scrapbook pages

#B Create an array of scrapbook pages

It almost feels like we’re cheating because the code we’ve added is so minimal. Inside of the

ListComponent class, we declared an array to hold individual scrapbook pages. To make it easier (and to

use an object-oriented feature of TypeScript) we created a new class named Page. You’ll notice that the

Page class was imported at the top of the component. Before we go any further, create the Page class.

Add a folder named models to the app folder, then add a file named page.ts to the models folder. Place

the code from listing 17.2 into the page.ts file.

Listing 17.2 The page.ts file defines a re-useable Page class that represents a single scrapbook

page

import { ImageSource } from "image-source"; // #A

export class Page {

 Id: number;

 Title: string;

 Age: string;

 BirthDate: any;

 Gender: string;

 Lat: number;

 Long: number;

 Image: ImageSource;

 ImageBase64: string;

}

#A The image source references the Pet’s photo

We haven’t talked about class definitions in TypeScript before, and we’re not going to dive deep,

because we’re assuming you’re familiar with object-oriented programming. We will, however, point out

some TypeScript syntax. The Page class has defined eight public properties. It may look strange because

there’s no var or let keyword—just the property name followed by its declared data type.

TIP To declare a public class property in TypeScript, use the form {propertyName}:

{datatype}; within the class declaration. For example, Id: number; declares a public

property named Id of type number.

NOTE The Page class is also a good example of writing maintainable code. With the definition of

the Page class in a single file, we can reuse it throughout our app. If any property needs to

change in the future, it can be changed in a single place.

Now that you know about the Page class and that we’ll be using it throughout the app, let’s get back

to the array declaration in the list.component.ts file. You’ll recall we added a public array property named

pages of type Page: pages: Array<Page>;. First, this array will be the object the UI markup will bind

to. Second, notice that there’s no mention of an observable or observable array.

NOTE In NativeScript-with-Angular apps, you don’t need to use the data/observable or

data/observable-array core module because Angular is smart. When you bind to a public property

 Branstein / The NativeScript Book 410

of a class (like the pages property), observable-like behavior gets built into the property

automatically. And the best part is you don’t need to do anything special. Cool, right?

UPDATING THE LIST COMPONENT UI

Next, let’s turn our attention to the UI markup of the List component. To re-create the original Pet

Scrapbook list page, add the following UI markup to the list.component.html file (listing 17.3).

Listing 17.3 The updated list.html file incorporating a list view

<ActionBar title="Pet Scrapbook">

</ActionBar>

<ScrollView>

 <ListView [items]="pages" class="list-group"> // #A

 <ng-template let-item="item"> // #B

 <StackLayout orientation="horizontal" class="list-group-item">

 <Image [src]="item.Image" class="thumb img-circle"> // #C

 </Image> // #C

 <Label class="list-group-item-text" // #C

 [text]="(item.Title === null ? 'New' : // #C

 item.Title + '\'s') + ' Scrapbook Page'"></Label> // #C

 </StackLayout>

 </ng-template>

 </ListView>

</ScrollView>

#A items collection is data-bound to the pages property

#B templates allow you to iterate over a collection with let-item property

#C template contents are rendered for each item in the items collection

Most of the list.component.html file is familiar. But, the Angular databinding syntax is a little different.

The first difference we’ll point out is the list view items attribute. It’s data-bound by placing square

brackets around the attribute’s name: [items]="pages", meaning that the items attribute is bound to

the pages property of the List component.

TIP To bind a UI element attribute to a component property, wrap the attribute in square brackets

[] and set its value to the name of the component property.

It’s not important that you understand why Angular works this way. Instead, just remember that it’s

the same as using vanilla NativeScript databinding like items="{{ pages }}".

NOTE The [attribute]="property" syntax is specifically known as one-way databinding. In

chapter 8, you learned about one-way NativeScript databinding, where changes made to the

JavaScript object are reflected in the UI, but not the reverse. Angular one-way databinding works

the same way. If you’re wondering about two-way databinding, hold on because we’ll cover it

later in this chapter.

Another difference in the List component’s UI markup is how item templates are rendered: <ng-

template let-item="item">...</ng-template>. In vanilla NativeScript, there’s a special UI

 Branstein / The NativeScript Book 411

element named ListView.itemTemplate that is used to define the repeating item template. But,

NativeScript-with-Angular apps can take a simplified approach by using the Angular syntax feature let-

item.

DEFINITION Angular’s let-item is a special syntax that acts as a for-loop iterator. When used in

conjunction with a template element as the child element of a data-bound array (like our

[items]="pages" bound list view), the contents of the template are repeated for each item in the

array.

The let-item syntax can be a bit confusing the first time you see it, but we like to think of it like a for

loop inside of the UI markup. It creates a reference to each item in the list view, using the value of the

let-item attribute as a variable that can be used in other databinding expressions within the template.

This leads us to the last change in the component, which is databinding the image and label within the

template:

<Image class="thumb img-circle" [src]="item.Image"></Image>

<Label class="list-group-item-text"

 [text]="(item.Title === null ? 'New' :

 item.Title + '\'s') + ' Scrapbook Page'"></Label>

Inside of the template, the let-item="item" syntax creates a local variable named item. The

variable references the current iterator instance of the Page class. Because it’s an instance of the Page

class, we have access to its properties, which can be seen in the image’s src attribute:

[src]="item.Image".

Before we move on, we want to point out that the same databinding expression syntax (like the syntax

used in the label’s text attribute) works in both vanilla NativeScript and NativeScript-with-Angular apps.

NOTE You’ve already learned how databinding expressions work in vanilla NativeScript, so we’re

not going into detail here. If you’d like a refresher, check out chapter 9.

CHECKING OUT THE CHANGES

Nice work! The List component now keeps track of an array of Pages, which is bound to the list view in

the UI markup. As scrapbook pages are added and updated in the pages array, the component’s UI will

stay in sync.

Let’s look at the results. Run the Pet Scrapbook Angular app on your local machine or from the

Playground. Navigate to the List component by tapping the Continue button. The List component now has

an empty list view displayed, as shown in figure 17.2.

 Branstein / The NativeScript Book 412

Figure 17.2 The List component UI markup updated to include the data-bound list view.

That’s it. You’ve learned the basics of databinding in a NativeScript-with-Angular app. And, it feels a

bit easier than vanilla NativeScript: add a public property to the component, then update the UI markup

to use Angular databinding syntax.

But, this milestone feels bittersweet because we’ve bound the List component to an empty array of

scrapbook pages. In the next section, we’ll fix this by recreating the file system service to load and save

scrapbook pages to the native device.

17.2 Creating and using services

In chapter 9, you learned how to use the file-system core module to read and write data to the native

device’s file system. When we used the file-system core module, we wrapped it in a special JavaScript

function we called a service class.

DEFINITION A service class is a collection of reusable code that can be shared throughout an application

to perform a specific group of related functionalities. Service classes typically create an internal API or

intermediate layer of functionality in your code and sit between the front-end UI layer of your

application and data or file-system access layers. Service classes generally contain business logic.

Good news. The concept of services (like the file-system service we created in the Pet Scrapbook app)

is the same in NativeScript with Angular apps. In fact, the concept of services in Angular apps are

considered a good practice.

TIP In NativeScript-with-Angular apps, you should wrap the functionality in a service when you need

to interact with remote data sources, the file system, or a hardware component that may be slow to

respond. Other reasons you may consider using a service are to hide the implementation of business

logic and promote code reuse.

Now that we’ve reinforced the concept of a service, let’s create a re-useable service to read and write

scrapbook page data from the file system.

 Branstein / The NativeScript Book 413

17.2.1 Page service

In the Pet Scrapbook Angular app, the functionality of a file-system service is largely unchanged. But, we

need to make several changes.

First, the service formerly known as the file system service needs a better name: let’s call it the page

service. The name file-system service wasn’t a bad name, but it was too specific and referenced the

implementation used to access data (via the file-system core module) instead of describing the type of

data (scrapbook pages). Seeing that the name of this service is incorrect may feel like a stretch now, but

imagine you need to retrieve various types of data from the file system: photos, contacts, locations, and

so on. Now imagine that even though all this data lives on the file system, it is accessed from different

locations and in slightly different ways. Calling our service file system service now seems silly: how are

other developers supposed to know the file-system service can access all this data? Wouldn’t it be better

to have multiple services, each named to describe the type of data they’re responsible for accessing? Do

you think photo service, contact service, and location service are more descriptive names? We do.

TIP Services should be named to describe the type of data they retrieve, not the methodology used to

retrieve the data.

The second change we’ll be making to the original file-system service is rewriting it in TypeScript using

a class. You should be familiar with TypeScript classes by now, but if you need a reminder, check out the

official TypeScript documentation at https://www.typescriptlang.org/docs/handbook/classes.html.

CREATING THE PAGE SERVICE

Before we jump into the code, create a services folder inside of the app folder, then add a file named

page.service.ts to the services folder.

TIP The Angular style guide is clear on where service classes should be created (in the services folder)

and how they should be named. As you create services in your own project, be sure to name them

using the following convention: {name}.service.ts. For more style guide tips related to services, check

out https://angular.io/guide/styleguide#symbols-and-file-names.

After creating the page.service.ts file, add the contents of listing 17.4 to it.

Listing 17.4 The page.service.ts file defining the page service, which reads and writes scrapbook

page data from the file system

import { Injectable } from "@angular/core"; // #A

import { Page } from "../models/page";

import * as fileSystem from "file-system";

import * as image from "image-source";

@Injectable() // #B

export class PageService {

 getPage(id: number): Page {

 let pages = this.getPages();

 let index = this.findPageIndex(pages, id);

 if (index === -1)

 Branstein / The NativeScript Book 414

 return null;

 return pages[index];

 }

 getPages(): Array<Page> {

 let file = fileSystem.knownFolders.documents().getFile("scrapbook.json");

 let pages = file.readTextSync().length === 0

 ? new Array<Page>()

 : <Array<Page>>JSON.parse(file.readTextSync());

 pages.forEach((page) => {

 page.Image = image.fromBase64(page.ImageBase64);

 });

 return pages;

 }

 savePage(scrapbookPage: Page): void {

 let file = fileSystem.knownFolders.documents().getFile("scrapbook.json");

 let pages = this.getPages();

 let index = this.findPageIndex(pages, scrapbookPage.Id);

 let page = new Page();

 page.Id = scrapbookPage.Id;

 page.Title = scrapbookPage.Title;

 page.Gender = scrapbookPage.Gender;

 page.Age = scrapbookPage.Age;

 page.BirthDate = scrapbookPage.BirthDate;

 page.ImageBase64 = scrapbookPage.ImageBase64;

 page.Lat = scrapbookPage.Lat;

 page.Long = scrapbookPage.Long;

 if (index !== -1) {

 pages[index] = scrapbookPage;

 }

 else {

 pages.push(scrapbookPage);

 }

 var json = JSON.stringify(pages);

 file.writeText(json);

 }

 private findPageIndex(pages: any, id: number): number {

 return pages.findIndex(function (element) {

 return element.Id === id;

 });

 }

}

#A Import the Injectable decorator

#B Allow the page service to be injected as a dependency into other classes

There’s a lot of things you’ll recognize from the original file-system service inside of the page service.

Specifically, the getPages() and savePage() functions and their use of the file-system core module. There

 Branstein / The NativeScript Book 415

are also several new items to discuss, including the getPage() function. We won’t be using this function

immediately, but it will come in handy as we re-create the details page.

A second change is the name of the service class: PageService. Following the Angular style guide and

our recommendations on naming services, the class name reflects its file name of the data type (Page)

followed by Service.

The final change is the addition of the @Injectable decorator above the PageService class. You learned

about decorators in the last chapter when we discussed the @Component and @NgModule decorators.

The @Injectable decorator is a special decorator that tells other classes that the PageService class can be

injected as a dependency into other classes automatically. You learned about dependency injection briefly

in chapter 15, but you can read more about it and how it works in Angular apps at

https://angular.io/docs/ts/latest/guide/dependency-injection.html.

UPDATING THE LIST COMPONENT TO USE THE PAGE SERVICE

Now that we’ve created a re-useable service, let’s return to the List component and use the service to

load the scrapbook pages when the component loads. Update the List component’s list.component.ts file

to use the page service as shown in listing 17.5.

Listing 17.5 The list.component.ts file updated to inject the page service and load scrapbook

pages into the page array

import { Component, OnInit } from "@angular/core"; // #A

import { Page } from "../models/page";

import { PageService } from "../services/page.service" // #B

@Component({

 selector: "ps-list",

 moduleId: module.id,

 providers: [PageService], // #B

 templateUrl: "./list.component.html",

 styleUrls: ['./list.component.css']

})

export class ListComponent implements OnInit {

 pages: Array<Page>;

 constructor(private pageService: PageService) { } // #C

 ngOnInit(): void { // #D

 this.pages = this.pageService.getPages(); // #D

 } // #D

}

#A import the OnInit interface to tap into the ngOnInit lifecycle hook

#B the providers array tells Angular to create an instance of the PageService when a ListComponent is created

#C inject the PageService created in the providers array into the class

#D tap into the ngOnInit lifecycle event to get the list of pages

At first, you might feel overwhelmed by the code we added to the List component, so let’s break it

down into two pieces: injecting the page service and using it to get data.

 Branstein / The NativeScript Book 416

INJECTING THE PAGE SERVICE

In NativeScript-with-Angular apps, you use dependency injection to get an instance of service classes

within another class. You’ll remember the @Injectable decorator from earlier in this chapter: that allows

the page service to be injected into other classes. Dependency injection in Angular is something that

happens automatically, but you need to do make sure it’s configured properly by adding the providers

property to the @Component decorator.

DEFINITION The providers property is an array of classes that tells Angular what to create an instance

of when a component is created. For example, providers: [PageService] tells Angular to

create an instance of the PageService class when a List component is created.

After declaring the page service as provider for the List component, all that’s left is to add the page

service as a constructor parameter: constructor(private pageService: PageService). After

adding this parameter, Angular automatically creates a private class variable named pageService that

can be accessed from anywhere in the class by using this.pageService.

USING THE PAGE SERVICE

After injecting the page service into the List component, it’s easy to get a list of pages:

this.pageService.getPages();. But, you may want to put this service call into the constructor.

Don’t do it. Resist.

TIP Per the Angular documentation, constructors are no place for complex logic, or loading data from

a service. Constructors are for simple object initialization and writing up properties. Complex logic

operations (like service calls) that need to occur when a component is created should be done in the

ngOnInit lifecycle hook.

DEFINITION Lifecycle hooks are a way of tapping into the key life moments of Angular components,

allowing you the execute code when an event happens. There are a variety of lifecycle hooks to tap

into. One event, ngOnInit is called when a component is initialized and displays data-bound properties.

If you’re using services to get data to display in the UI, retrieving that data during the ngOnInit lifecycle

hook is the right time to do it. To learn about other lifecycle hooks, check out

https://angular.io/docs/ts/latest/guide/lifecycle-hooks.html.

We tapped into the ngOnInit lifecycle hook in the List component and used it to load scrapbook pages

from the page service in listing 17.5. To do this, we had to do three things:

3. Import the OnInit interface from the @angular/core module: import { Component, OnInit

} from "@angular/core";.

4. Add the OnInit interface to the List component class declaration: class ListComponent

implements OnInit { ... }.

5. Implement the OnInit interface by adding the ngOnInit() : void { ... } function to the

List component class.

 Branstein / The NativeScript Book 417

After implementing the OnInit interface, we loaded scrapbook pages from the file system using the

page service: this.pages = this.pageService.getPages();.

WARNING It’s easy to get confused when tapping into lifecycle hook like ngOnInit. The interface you

need to implement is named OnInit, but the function that needs implemented in the OnInit interface is

named ngOnInit. Be careful, and mind your capitalization. If you can’t remember, don’t hesitate to

reference https://angular.io/docs/ts/latest/guide/lifecycle-hooks.html.

Unfortunately, there’s not much to see when we run the Pet Scrapbook Angular app again: that’s

because loading scrapbook data from an empty file still shows the same empty list of pages. But, running

the app right now can help you verify that everything is working as expected. If all is well, you should see

something similar for figure 17.3.

Figure 17.3 The List component after injecting the page service to load scrapbook pages from the file system. You

shouldn’t see any scrapbook pages loaded because we haven’t added any yet.

17.3 Databinding events

Earlier in this chapter, you learned how to use Angular’s one-way databinding syntax to bind public

properties in a component to the UI markup. You also learned that the syntax differed from vanilla

NativeScript mustache syntax because it placed square brackets around the UI attributes. For example,

to bind the text attribute of a label element to the name field of a component you would use <Label

[text]="name"></Label>.

Another difference between databinding in vanilla NativeScript and NativeScript-with-Angular apps is

the syntax used to bind UI markup events. In vanilla NativeScript, event binding was accomplished

 Branstein / The NativeScript Book 418

through the same mustache syntax as property binding, but Angular throws you a curve-ball for event

binding.

NOTE UI events are bound by placing parenthesis () around the UI event attribute and then placing a

function call in the value of the attribute. For example, to bind a button’s tap event to the onTap()

function of a component, you use: <Button (tap)="onTap()"></Button>.

Yeah, we’re with you. Angular’s databinding syntax does feel strange. Plus, how are you supposed to

keep track of the when to use brackets and when to use parenthesis? Unfortunately, there’s no easy way.

You’ll just have to commit it to memory. But, we have one tip that might help.

TIP Remembering that events need parenthesis in the value and one-way property binding doesn’t is

frustrating. We found it was easier to remember that parenthesis around the attribute means

parenthesis in the value.

17.3.1 Using event binding to add a new scrapbook page

Now that you know the basis of event binding, let’s combine it with what you’ve learned about routing in

the previous chapter and add a button to the List component’s action bar that navigates to the Detail

component. We’re missing a few things, like the button, the correct routing configuration, the details

modele, and the details component, so there’s a lot to do. Because there are so many steps, we’ve outlined

our plan below:

▪ Step 1: Add a button to the List component’s action bar

▪ Step 2: Create a tap event handler in the ListComponent class

▪ Step 3: Create the Detail module and component

▪ Step 4: Update the routing configuration to create a Detail module route

Let’s go!

STEP 1: ADD A BUTTON TO THE LIST COMPONENT’S ACTION BAR

Get started by adding an action item to the action bar in the list.component.html file. When you’re finished

the action bar element should look like listing 17.6.

Listing 17.6 The updated action bar in list.component.html

<ActionBar title="Pet Scrapbook">

 <ActionItem (tap)="onAddTap()" text="Add" //#A

 ios.position="right" android.position="actionBar">

 </ActionItem>

</ActionBar>

#A Remember event binding uses parenthesis around the event attribute and in the attribute value

You’ve seen similar UI markup in the original Pet Scrapbook app. The only change is the syntax for

binding the tap event: (tap)="onAddTap()". By adding parenthesis around the tap attribute and

 Branstein / The NativeScript Book 419

placing a function call into the attribute value, Angular expects a public function named onAddTap() to

exist in the List component.

Yes, it’s that quick.

STEP 2: CREATE A TAP EVENT HANDLER IN THE LISTCOMPONENT CLASS

With the event binding configured in the List component’s UI mark, let’s turn our attention to the

onAddTap() function in list.component.ts. Listing 17.7 shows the updated List component.

Listing 17.7 The list.component.ts file with the onAddTap() function defined

import { Component, OnInit } from "@angular/core";

import { Page } from "../models/page";

import { RouterExtensions } from "nativescript-angular/router";

import { NavigationOptions } from "nativescript-angular/router/ns-location-strategy";

// #A

import { PageService } from "../services/page.service";

@Component({

 selector: "ps-list",

 moduleId: module.id,

 providers: [PageService],

 templateUrl: "./list.component.html",

 styleUrls: ['./list.component.css']

})

export class ListComponent implements OnInit {

 pages: Array<Page>;

 constructor(

 private routerExtensions: RouterExtensions,

 private pageService: PageService) { }

 ngOnInit(): void {

 this.pages = this.pageService.getPages();

 }

 onAddTap(): void {

 let options: NavigationOptions = { // #A

 clearHistory: true // #A

 }; // #A

 this.routerExtensions.navigate(

 ["detail", this.pages.length], // #B

 options);

 }

}

#A NavigationOptions class is needed to clear navigation history

#B To pass data between pages, include it in the routing array as an additional value

Adding the onAddTap() function is straightforward, but you’ll notice something new going on inside of

the navigate() function: a second value in the routing array. To pass data between components, you can

include any number of additional values in the routing array. The first value, "detail", is the route

 Branstein / The NativeScript Book 420

we’re navigating to. Any subsequent values (like this.pages.length) are appended to the route and

passed to the destination component.

Also of note in listing 17.7 is the NavigationOptions class.

DEFINITION The NavigationOptions class is used to control how navigation between components occurs

and settings such as clearing the navigation history, animations, and transitions.

You’ll also notice that the NavigationOptions class must be imported before we can use it. It’s a

member of the @nativescript-angular/router/ns-location-strategy module and should be added to the

import statement as shown in listing 17.7.

NOTE You might be wondering why we’re passing in the length of the pages array to the details

component. We’re using it as a unique identifier for the page we’re about to create. You’ll recall that

each page has a unique identifier and using the length of the pages array is quick way of getting a

unique id for each page. Another method for generating a unique identifier is to read the list of

scrapbook pages from the file system, find the highest id, and increment it by one. Putting the

methodology of getting a unique identifier aside, what’s important is getting one.

STEP 3: CREATE THE DETAIL MODULE AND COMPONENT

Now that we’ve updated the List component, let’s turn our attention to the Detail module and component.

We haven’t created it yet, so start by creating a folder named detail inside the app folder, then create five

files in the detail folder: detail.module.ts, detail-routing.module.ts, detail.component.html,

detail.component.css, and detail.component.ts.

After you’ve created the files, add an action bar and action item element to the detail.component.html

file, reproducing the same UI from the original Pet Scrapbook (listing 17.8).

NOTE Don’t worry if the Detail component looks a bit sparse, we’ll come back it later. For now, it will

act as a placeholder so we know our routing configuration works.

Listing 17.8 The detail.component.html file with the onAddTap() function defined

<ActionBar [title]="'Page id: ' + page.Id">

 <ActionItem (tap)="onDoneTap()" text="Done"

 ios.position="right" android.position="actionBar">

 </ActionItem>

</ActionBar>

You’ll notice in listing 17.8 that the title of the action bar will display the scrapbook page’s Id property,

which we’ll get from the data passed into this component from the routing values. It’s not very clear how

we’ll get this data yet, but we’ll cover this shortly, so hang in there.

We also want to point out that the Done button has its tap event bound to the onDoneTap() event,

like the Add button was bound in the List component.

With the UI markup defined, let’s update the Detail module and component. Add the contents of listing

17.9, 17.10, and 17.11 to the detail-routing.module.ts, detail.module.ts, and detail.component.ts files.

 Branstein / The NativeScript Book 421

Listing 17.9 The detail-routing.module.ts file

import { NgModule, NO_ERRORS_SCHEMA } from "@angular/core";

import { NativeScriptCommonModule } from "nativescript-angular/common";

import { DetailRoutingModule } from "./detail-routing.module";

import { DetailComponent } from "./detail.component";

@NgModule({

 imports: [

 DetailRoutingModule,

 NativeScriptCommonModule

],

 declarations: [

 DetailComponent

],

 schemas: [

 NO_ERRORS_SCHEMA

]

})

export class DetailModule { }

Next, the Detail module’s routing class (listing 17.10).

Listing 17.10 The detail-routing.module.ts file

import { NgModule } from "@angular/core";

import { Routes } from "@angular/router";

import { NativeScriptRouterModule } from "nativescript-angular/router";

import { DetailComponent } from "./detail.component";

const routes: Routes = [

 { path: "", component: DetailComponent }

];

@NgModule({

 imports: [NativeScriptRouterModule.forChild(routes)],

 exports: [NativeScriptRouterModule]

})

export class DetailRoutingModule { }

Then the Detail component class (listing 17.11).

Listing 17.11 The detail.component.ts file loading route value parameters and handling the

onDoneTap() event

import { Component, OnInit } from "@angular/core";

import { Page } from "../models/page";

import { RouterExtensions, PageRoute } from "nativescript-angular/router"; // #A

import { NavigationOptions } from "nativescript-angular/router/ns-location-strategy";

import { PageService } from "../services/page.service";

import { switchMap } from "rxjs/operators"; // #A

@Component({

 selector: "ps-detail",

 Branstein / The NativeScript Book 422

 providers: [PageService],

 templateUrl: "views/detail/detail.html",

 styleUrls: ["views/detail/detail.css"]

})

export class DetailComponent implements OnInit {

 page: Page; // #B

 constructor(

 private routerExtensions: RouterExtensions,

 private pageService: PageService,

 private pageRoute: PageRoute) { }

 ngOnInit(): void {

 let id:number; // #C

 this.pageRoute.activatedRoute.pipe(// #C

 switchMap(activatedRoute => activatedRoute.params) // #C

).forEach((params) => { id = +params["id"] }); // #C

 this.page = this.pageService.getPage(id); // #D

 if (this.page === null) { // #D

 this.page = <Page>{ Id: id }; // #D

 } // #D

 }

 onDoneTap(): void { // #E

 this.pageService.savePage(this.page);

 var options = <NavigationOptions>{

 clearHistory: true

 };

 this.routerExtensions.navigate(["list"], options);

 }

}

#A PageRoute and the rxjs module are needed to parse the route parameters

#B A scrapbook page is stored in the component for databinding

#C On init, get the id field passed via a route parameter

#D If a page can’t be loaded via its id, create a new page with that id

#E When done, save the scrapbook page and navigate back to the List component

There’s so much going on in the Detail component, it may be a bit confusing. Let’s break it down into

three areas: getting data passed in via the route parameters, loading a scrapbook page, and saving it

when we’re done.

GETTING DATA PASSED IN VIA THE ROUTE PARAMETERS

At the top of listing 17.11 is the first evidence of getting data passed in via the route parameters, importing

PageRoute from @nativescript-angular/router and importing switchMap from rxjs/operator.

DEFINITION The PageRoute class is used to get an instance of the ActivatedRoute class, an Angular

class that holds route parameters.

 Branstein / The NativeScript Book 423

You don’t need to know the intimate details of how and why the PageRoute class works. Just remember

to import it into components that have data passed into them, then inject an instance of the class via the

constructor.

To get the data passed into the Detail component, we use the injected page route instance:

this.pageRoute.activatedRoute.pipe(

 switchMap(activatedRoute => activatedRoute.params))

 .forEach((params) => { id = +params["id"]; });

WARNING This code looks and feel overly complicated, and that’s because inside the page route

instance and it’s activatedRoute property, there’s a lot going on with observables. We’re not going to

cover these details, because it’s beyond the scope of this book. But, you may want to learn more about

how NativeScript-with-Angular apps navigate between pages. To find out more, check out

https://docs.nativescript.org/core-concepts/angular-navigation#passing-parameter.

Even though we’re not going to dive into the details, it’s still important to understand (at a high-level)

how to extract parameters from the page route instance. Inside of PageRoute is the activatedRoute

property, which has a params object. But, accessing the params object isn’t easy because of how the

activatedRoute property works. So, to make it easier to read data from the activatedRoute property, the

switchMap() function is used.

NOTE The switchMap() function comes from the imported rxjs/operator module, and in essence creates

an array of routing parameter we can read. To learn more about RxJS and the switchMap() function,

check out http://reactivex.io/rxjs/class/es6/Observable.js~Observable.html#instance-method-

switchMap.

Once we have an array of parameters from the switchMap() function, we iterate through them and

grab the id value.

TIP You may have noticed the strange + sign in listing 17.9: id = +params["id"];. It’s called a

unary operator and performs a datatype conversion from a string held in params["id"] to a number.

We wanted to point this out because you may have never run across it before, and spent hours trying

to Google "plus sign TypeScript."

LOADING A SCRAPBOOK PAGE

After getting the scrapbook page id, the page service is used to load the scrapbook page (stored in the

this.page property of the Detail component):

 this.page = this.pageService.getPage(id);

 if (this.page === null) { this.page = <Page>{ Id: id }; }

If the page service returns null, that means there is no existing scrapbook page with the referenced

id, so a new page is created and stored in the this.page property.

 Branstein / The NativeScript Book 424

SAVING THE SCRAPBOOK PAGE

The final section of code we want to review in listing 17.9 is the onDoneTap() function, which is bound to

the Done action item button. When we’re finished entering data,

this.pageService.savePage(this.page) is called to save the scrapbook page. After the page has

been saved, we navigate back to the List component.

WARNING Before continuing, don’t forget to add the Details module and routing classes. The code is

identical to the List module and routing classes, so we’re not going to include them here, but you can

see the code online in the Playground at

STEP 4: UPDATE THE ROUTING CONFIGURATION TO CREATE A DETAIL COMPONENT ROUTE

After updating the Detail component file, the last item that needs done is to configure a route for the

Detail component in the app-routing.module.ts and detail-routing.module.ts files. Listings 17.10 and

17.11 outline the changes made.

Listing 17.12 The app-routing.module.ts file updated to include a route for the Detail component

import { NgModule } from "@angular/core";

import { Routes } from "@angular/router";

import { NativeScriptRouterModule } from "nativescript-angular/router";

const routes: Routes = [

 { path: "", redirectTo: "/home", pathMatch: "full" },

 { path: "home", loadChildren: "./home/home.module#HomeModule" },

 { path: "list", loadChildren: "./list/list.module#ListModule" },

 { path: "about", loadChildren: "./about/about.module#AboutModule" },

 { path: "detail", loadChildren: "./detail/detail.module#DetailModule" }, // #A

];

@NgModule({

 imports: [NativeScriptRouterModule.forRoot(routes)],

 exports: [NativeScriptRouterModule]

})

export class AppRoutingModule { }

#A To add the Detail component route, import it, add it to the routes and component arrays

NOTE You may recall you’ve already created the routing information for the Detail component, but

these small changes are what enable you to pass data into the Detail component during routing.

Listing 17.13 The detail-routing.module.ts file updated to include a parameter for the Detail

component

import { NgModule } from "@angular/core";

import { Routes } from "@angular/router";

import { NativeScriptRouterModule } from "nativescript-angular/router";

import { DetailComponent } from "./detail.component";

const routes: Routes = [

 { path: ":id", component: DetailComponent } // #A

];

 Branstein / The NativeScript Book 425

@NgModule({

 imports: [NativeScriptRouterModule.forRoot(routes)],

 exports: [NativeScriptRouterModule]

})

export class AppRoutingModule { }

#A To add the Detail component route, import it, add it to the routes and component arrays

Adding the detail route is just like adding the route for the List and Home components, with one

exception: the detail route also needs to include a placeholder for the id parameter we’ll be passing in:

{ path: ":id", component: DetailComponent }

NOTE Route parameters are declared using the :{parameter-name} syntax following the route

name. For example, the route path of "detail/:id" describes a route named detail with a single parameter

named id. Even though this example only shows one route parameter, additional parameters can be

added.

Route parameters are a standard Angular functionality, so we’re not going to dive any deeper on the

topic. If you’re still interested in learning more, check out official NativeScript-with-Angular documentation

at https://docs.nativescript.org/core-concepts/angular-navigation#navigation.

With these changes to the Pet Scrapbook Angular app, you should be able to create new scrapbook

pages and navigate back to the List component. If you’re following along, your version of the app should

look like figure 17.4.

Figure 17.4 After saving a scrapbook page, it is displayed on the List component.

It may not look pretty, but it’s functional. Tapping the Add button navigates to the Detail component.

When finished, tapping the Done button saves the scrapbook page and navigates back to the List

component, showing the saved page.

But, what happens when you tap the scrapbook page in the list? Nothing right now. Let’s continue to

explore event data binding by adding a tap handler for an item in the list.

 Branstein / The NativeScript Book 426

17.3.2 Passing data with event databinding

In the last section, you learned how to use Angular’s databinding syntax to bind UI element events to

component functions. The examples from the Pet Scrapbook Angular app introduced simple event binding.

DEFINITION Simple event binding is where an event handler doesn’t need to know any information (or

context) about the data bound UI element to perform its intended purpose. For example, tapping the

Continue button on the Home component and the Add button on the List component are examples of

simple event binding: to navigate to another component, it doesn’t need to know anything about its

current state.

Not all UI markup events are simple events, and they often need to know about their surroundings.

Take the list of scrapbook pages on the List component as an example. In the original Pet Scrapbook app,

when you tapped on an item in the list, you navigated to a detail page for that item. This is an example

of complex event binding: the handler for the list item tap event needed information (like the scrapbook

page id of the tapped list item) to navigate to the detail page and display the correct scrapbook page.

It turns out that passing data (or context) to an event handler is easy in NativeScript-with-Angular

apps. Let’s investigate how it’s done with Angular’s databinding syntax by updating the list view in the

list.html file to add the itemTap event:

<ListView class="list-group" [items]="pages" (itemTap)="onItemTap($event)">

As you can see, Angular does indeed make it easy. Binding to an event is the same syntax, and to

pass along the event data (or context) to the code behind, we added the $event keyword. The $event

keyword passes event data to the tap event handler automatically.

HANDLING EVENTS WITH EVENT DATA

Handling events bound with the $event keyword is just like handling simple data-bound events. Let’s start

by adding the event handler code from listing 17.14 to the ListComponent class.

Listing 17.14 The list.component.ts file updates that include the itemTap event handler

import { ItemEventData } from "ui/list-view";

onItemTap(args: ItemEventData): void { // #A

 let id = args.index;

 var options = <NavigationOptions>{

 clearHistory: true

 };

 this.routerExtensions.navigate(["detail", id], options);

}

#A the $event keyword injects a parameter into the event handler

When the $event keyword is used in databinding an event, it injects event data into the event handler

as a parameter. The datatype of the injected parameter varies depending on the event type. There’s not

enough room to outline every UI event here, and you don’t need to memorize them because it’s easy to

 Branstein / The NativeScript Book 427

look up online. Check out the official NativeScript API at https://docs.nativescript.org/api-

reference/globals.html for more information.

And that’s it! We said it was easy. If you’ve been following along, you can now tap a scrapbook page

to navigate to the detail page. When the Detail component loads, it will parse the page’s id, load the page

from the file system, then display the data-bound UI. Figure 17.5 shows the Pet Scrapbook Angular app

after making this change.

Figure 17.5 Tapping a list item navigates to the details component while passing along the item’s page id.

17.4 Advanced databinding

Now that you’ve learned the basics of databinding by using the one-way and event databinding syntaxes,

it’s time to step up our game and learn various advanced databinding techniques that can be used in

NativeScript-with-Angular apps.

Before we get ahead of ourselves, let’s start by updating the Detail component’s detail.component.html

file with the code in listing 17.15. For now, we’ll be adding in one-way data-binding for the UI elements,

then we’ll come back and make a few minor changes to use two-way databinding.

Listing 17.15 The detail.component.html file updated for one-way databinding using Angular

<ActionBar [title]="page.Title === null || page.Title === undefined || // #A

 page.Title === '' ? 'New Page' : page.Title + '\'s Page'"> // #A

 <ActionItem text="Done" (tap)="onDoneTap()"

 ios.position="right" android.position="actionBar">

 </ActionItem>

</ActionBar>

<StackLayout>

 <StackLayout class="form">

 <StackLayout class="input-field">

 <Label class="label" text="Name:" >

 </Label>

 <TextField class="input" [text]="page.Title" hint="Enter a name..."> // #A

 </TextField> // #A

 </StackLayout>

 <StackLayout class="input-field">

 <Label class="label" [text]="'Birth date: ' + // #B

 (page.BirthDate === null ? '' : '(' + page.Age + ' years old)')"> // #B

 </Label> // #B

 <TextField class="input" editable="false" // #B

 [text]="page.BirthDate" // #B

 (tap)="onBirthDateTap()" // #B

 hint="Enter a birth date..."> // #B

 Branstein / The NativeScript Book 428

 </TextField> // #B

 </StackLayout>

 <StackLayout class="input-field">

 <Label class="label" text="Gender:">

 </Label>

 <TextField class="input" editable="false" // #C

 (tap)="onGenderTap()" // #C

 [text]="page.Gender" hint="Select a gender..."> // #C

 </TextField> // #C

 </StackLayout>

 <StackLayout class="input-field">

 <Label class="label" text="Image:">

 </Label>

 <Image [src]="page.Image" stretch="None"> // #D

 </Image> // #D

 <Label class="footnote" [text]="(page.Lat === undefined || // #E

 page.Long === undefined) ? '' : 'Picture taken at ' + // #E

 page.Lat + ', ' + page.Long"> // #E

 </Label> // #E

 </StackLayout>

 </StackLayout>

 <Button text="Add Image" (tap)="onAddImageTap()"

 class="btn btn-primary btn-rounded-sm btn-active">

 </Button>

</StackLayout>

#A Binds the title

#B Binds the birthdate and age

#C Binds the gender

#D Binds the image

#E Binds the lat and long

We’re not going to review listing 17.15 in detail because it’s the same UI elements we used in the

original Pet Scrapbook.

NOTE You’ll notice that we haven’t defined the event handlers for the birth date, gender, and image

buttons. Don’t worry, we didn’t forget. We’ll look at those later in the chapter.

Listing 17.15 is a great starting place, because it shows one-way databinding for the details

component, but as you learned in previous chapters, one-way isn’t the only way (especially if we expect

users to enter data). It’s time to check out two-way databinding.

17.4.1 Two-way databinding

Two-way databinding in Angular apps uses something called ngModel.

DEFINITION ngModel is a special Angular directive that allows data to flow in two directions: from a

property to the UI markup, then from the UI markup back to the property.

Before you jump to any conclusions, using ngModel is easy, and there’s a minor syntax change you

need to learn to use it.

 Branstein / The NativeScript Book 429

Unfortunately, support for ngModel isn’t available unless you import the NativeScriptFormsModule, but

that’s easily remedied. Let’s get started using ngModel by updating the Detail module as shown in listing

17.16.

Listing 17.16 The app.module.ts file updated to use the NativeScript forms module

import { NgModule, NO_ERRORS_SCHEMA } from "@angular/core";

import { NativeScriptCommonModule } from "nativescript-angular/common";

import { NativeScriptFormsModule } from "nativescript-angular/forms"; // #A

import { DetailRoutingModule } from "./detail-routing.module";

import { DetailComponent } from "./detail.component";

@NgModule({

 imports: [

 DetailRoutingModule,

 NativeScriptCommonModule,

 NativeScriptFormsModule // #A

],

 declarations: [

 DetailComponent

],

 schemas: [

 NO_ERRORS_SCHEMA

]

})

export class DetailModule { }

#A Import the forms module to enable two-way databinding

Two minor changes were made to import the NativeScriptFormsModule into the Detail module.

NOTE If you’re familiar with Angular, you’ll be familiar with the Angular module named FormsModule,

which is the default Angular module used to perform two-way databinding with ngModel. In

NativeScript-with-Angular apps, we use a NativeScript-specific version of the forms module,

NativeScriptFormsModule, which integrates the Angular FormsModule with NativeScript.

After importing this module, implementing two-way databinding is a simple change to the UI code; in

fact, it is just another syntax difference. For example, in one-way databinding, to bind the text of a label

to the name property of a component, we would use [text]="name". When using ngModel, [text]

gets replaced with [(ngModel)], creating [(ngModel)]="name".

Before we go any further, let’s update the detail.component.html file to use ngModel for the text field

bound to the title property. Change the text field to look like this:

<TextField class="input" [(ngModel)]="page.Title" hint="Enter a name...">

</TextField>

Reflecting back, the text field bound the text attribute [text]="page.Title", which was one-way

databinding. With two-way databinding, [(ngModel)] is used instead of [text].

 Branstein / The NativeScript Book 430

NOTE The [(ngModel)] syntax may feel strange, but there is a method to the madness. The syntax

is really a shorthand for the following: [text]="title"

(ngModelChange)="title=$event". Let that settle in for a minute. [text]=”title” does one-

way databinding from the component property to the UI layer. Although we haven’t discussed

(ngModelChange) specifically, it uses the parenthesis format, which is an event. That means that

there’s an event called ngModelChange, and when it is raised, we should call the code it specifies

(title=$event). ngModelChange is raised when the UI element updates, so it acts like another

one-way databinding, except it’s from the UI to code. And guess what? When you have two one-

way databinding processes working in concert, it’s considered two-way.

Let’s check out the two-way databinding in action by running the Pet Scrapbook Angular app. You’ll

notice as you update the name text field, action bar text also updates (figure 17.6).

Figure 17.6 When text is entered, the action bar text also updates.

Using ngModel is straightforward, but the first time we used ngModel, we had a lingering thought,

"How does it know which property to bind to?" It’s not magic, but instead a collection of well-known

defaults for UI elements that need to participate in two-way binding. For example, when ngModel is used

in text fields, it assumes you want to bind it to the text attribute. Why? Because that’s the only attribute

where data is entered in, and you don’t need two-way databinding on fields that don’t support data entry.

If you’re still in doubt as to which fields ngModel applies to on each element, you can use table 17.1

as a reference.

Table 16.1 The NativeScript UI elements that support the ngModel syntax and the properties that Angular
binds to

UI Element Property

DatePicker date

ListPicker selectedIndex

SearchBar text

 Branstein / The NativeScript Book 431

SegmentedBar selectedIndex

Slider value

Switch checked

TextField text

TextView text

TimePicker time

17.4.2 Formatting data-bound properties

The final advanced databinding technique we’re going to cover for NativeScript-with-Angular apps is

formatting data-bound properties. If you can recall, the original Pet Scrapbook used a databinding

expression to format the birth date:

text="{{ birthDate, birthDate | dateConverter(dateFormat) }}".

This expression calls a globally-registered function, dateConverter(), to provide the formatting.

In NativeScript-with-Angular apps, there’s a similar functionality, but it’s much easier. Angular has a

set of formatting functions for dates. Let’s use one by updating the birth date text field’s data-bound

property. Use the pipe (|) operator and a date formatting function:

[text]="page.BirthDate | date:'shortDate'"

This expression binds the text attribute to the birth date property of the page object and applies a

short date formatting function to it. When displayed, it will show mm/dd/yyyy. The short date function

isn’t the only one available. To learn more about the formatting options that are available see

https://angular.io/docs/ts/latest/api/common/index/DatePipe-pipe.html.

That’s all we’re going to cover about databinding in a NativeScript-with-Angular apps, because that’s

everything you’ll need to know to start building your first app. If you’re still looking for more, we

recommend checking out the official NativeScript documentation at

http://docs.nativescript.org/angular/core-concepts/angular-data-binding.html.

17.5 Loading components as modal dialogs

In chapter 11, you learned how modal dialogs can be used to improve the user experience of the Pet

Scrapbook Angular app. In case you forgot, modal dialogs (or modals) are a UI design concept where a

user’s interaction on a page prompts the UI to temporarily display a second page on top of the first page.

When the user completes their interaction with the second page, it disappears, and the UI is redirected

to the first page.

 Branstein / The NativeScript Book 432

We set out to add modals to the Pet Scrapbook initially because we wanted to hide the complexity of

the birth date and gender selection UIs from the detail page. Figure 17.7 is a reminder of the workflow

we introduced.

Figure 17.7 A user’s interaction with the update page with modal dialogs used to select the birth date.

We’ll be using the same workflow in the NativeScript-with-Angular version of our app, so keep it in

mind as you learn to use modals in this section.

17.5.1 Adding a date selection modal

If you recall from chapter 11, modals are simply pages opened in a different way. So, as we explore

modals in a NativeScript-with-Angular app, we’ll be using components.

NOTE Remember, NativeScript-with-Angular app components are equivalent to vanilla NativeScript

pages. And if a modal is a page in vanilla NativeScript apps, a modal is a component in NativeScript-

with-Angular apps.

Putting aside the difference that modals are components, there’s a different method used to create

and display a modal. Let’s see it in action by adding a modal to select the birth date for a scrapbook page.

The modal is really a component and will be called select-date (yeah, real creative name there…).

Start by creating a modals folder in the detail folder, then add a folder named select-date. Create the

three select-date component files in this folder: select-date.component.html, select-date.component.css,

and select-date.component.ts.

NOTE Notice the naming convention of the select-date component. Components (and various other

entities like services) use a dash in the file name when the name is compound (like select-date). This

is an Angular-specific style guide rule outlined online at https://angular.io/styleguide.

Add the contents of listing 17.17 to the select-date.html file.

Listing 17.17 The select-date.component.html file that defines the UI of the select-date component

(and modal)

 Branstein / The NativeScript Book 433

<StackLayout>

 <DatePicker [(ngModel)]="date"></DatePicker> // #A

 <Button class="btn btn-primary btn-rounded-sm btn-active"

 text="Done" (tap)="onDoneTap()" >

 </Button>

</StackLayout>

#A DatePicker elements can be bound with ngModel

The UI markup for the select-date component is quite simple. One item to note that you’ll recognize

from earlier in this chapter is the date picker element is bound using ngModel to enable two-way

databinding.

Next, update the select-date.component.ts file, adding the content of listing 17.18.

Listing 17.18 The select-date.component.ts file that defines the logic and functionality

import { Component, OnInit } from "@angular/core";

import { ModalDialogParams } from "nativescript-angular/modal-dialog"; // #A

@Component({

 selector: "ps-select-date",

 module: module.id,

 templateUrl: "./select-date.component.html",

 styleUrls: ["./select-date.component.css"]

})

export class SelectDateComponent implements OnInit {

 date: any;

 constructor(private params: ModalDialogParams) { // #B

 this.date = params.context; // #B

 } // #B

 ngOnInit(): void {

 }

 onDoneTap(): any {

 this.params.closeCallback(this.date); // #C

 }

}

#A To read parameters passed into modals, you need ModalDialogParams

#B The data-bound date property is set to an initial value, passed in via a parameter

#C The modal returns the selected date when it closes

Let’s dissect what’s going on in listing 17.18. First, we’ve imported the ModalDialogParams class from

the nativescript-angular/modal-dialog module.

DEFINITION The ModalDialogParams class is a special class responsible for tracking any data (or

parameters) passed into the modal when it’s opened.

Although we haven’t seen the code that opens the modal dialog yet, we can surmise that the current

value for the birth date is passed in as a parameter. To read that value, the context property of the

ModalDialogParams class instance is used. When the passed in parameter value is read, it gets assigned

 Branstein / The NativeScript Book 434

to the date property. But you’ll notice the date property is declared as a datatype of any, which seems a

bit strange.

TIP The date picker UI element can’t be initialized automatically if the datatype of the data-bound

property is a Date. As strange as this seems, you can trick the UI element to bind by declaring the

property as a type of any. Unfortunately, using the any datatype removes the type-safe advantage of

TypeScript, but we’re willing to accept that in this case. To see an alternate way of databinding with

the Date datatype, check out the official NativeScript documentation at

https://docs.nativescript.org/angular/code-samples/modal-page.

The last point of interest is the Done button’s tap event handler, onDoneTap(). If you recall, vanilla

NativeScript modals are closed by calling a close callback function. NativeScript-with-Angular apps work

the same way: the ModalDialogParams class has a property called closeCallback, which is a function that

gets called to pass data back to the calling component and close the dialog:

this.params.closeCallback(this.date);.

REGISTERING THE SELECT-DATE COMPONENT AS AN ENTRY COMPONENT

Before we can use the select-date component as a modal, we need to update the Detail module by

registering the components as entry components.

DEFINITION In the simplest of terms, entry components are a collection of components that are

dynamically loaded through code, and not routed to via navigation. Modal components fall into this

category, so you need to register them in a special way. We’re not going to dive deeper on entry

components, because they’re a much more complex topic. Just remember to register any modals in the

app module. If you’re interested in learning more about entry components, check out

https://angular.io/docs/ts/latest/cookbook/ngmodule-faq.html#!#q-entry-component-defined.

To register the modals, import them into the Detail module and add an entryComponents property to

the @NgModule declaration. Listing 17.19 shows these updates to the app.module.ts file.

Listing 17.19 The detail.module.ts file updated to include the select-date modal

import { NgModule, NO_ERRORS_SCHEMA } from "@angular/core";

import { NativeScriptCommonModule } from "nativescript-angular/common";

import { NativeScriptFormsModule } from "nativescript-angular/forms";

import { DetailRoutingModule } from "./detail-routing.module";

import { DetailComponent } from "./detail.component";

import { SelectDateComponent } // #A

 from "./modals/select-date/select-date.component"; // #A

@NgModule({

 imports: [

 DetailRoutingModule,

 NativeScriptCommonModule,

 NativeScriptFormsModule

],

 Branstein / The NativeScript Book 435

 declarations: [

 DetailComponent,

 SelectDateComponent

],

 entryComponents: [// #B

 SelectDateComponent // #B

], // #B

 schemas: [

 NO_ERRORS_SCHEMA

]

})

export class DetailModule { }

#A Import the select-date modal

#B Declare and register it in the entryComponents property

UPDATING THE DETAIL COMPONENT TO OPEN THE MODAL

The final step to using the select-date modal is to update the Detail component’s code file to handle the

tap event of the birth date text box UI element. You’ll recall we already added the databinding express to

the text box:

<TextField [text]="page.BirthDate | date:'shortDate'"

 class="input" editable="false"

 (tap)="onBirthDateTap()" hint="Enter a birth date..." ></TextField>

To open the select-date modal when the text box is tapped, update the detail.component.ts file as

shown in listing 17.20.

Listing 17.20 The detail.component.ts file updated to include code to open the select-date modal

import { Component, OnInit, ViewContainerRef } from "@angular/core"; // #A

import { Page } from "../models/page";

import { RouterExtensions, PageRoute } from "nativescript-angular/router";

import { NavigationOptions } from "nativescript-angular/router/ns-location-strategy";

import { PageService } from "../../services/page.service";

import { switchMap } from "rxjs/operators ";

import { ModalDialogService, ModalDialogOptions } // #A

 from "nativescript-angular/modal-dialog"; // #A

import { SelectDateComponent } // #A

 from "./modals/select-date/select-date.component"; // #A

@Component({

 selector: "ps-detail",

 moduleId: module.id,

 providers: [PageService],

 templateUrl: "./detail.component.html",

 styleUrls: ['./detail.component.css']

})

export class DetailComponent implements OnInit {

 page: Page;

 constructor(

 private routerExtensions: RouterExtensions,

 Branstein / The NativeScript Book 436

 private pageService: PageService,

 private pageRoute: PageRoute,

 private modalService: ModalDialogService, // #B

 private viewContainerRef: ViewContainerRef) { } // #B

 ngOnInit(): void {

 let id:number;

 this.pageRoute.activatedRoute.pipe(

 switchMap(activatedRoute => activatedRoute.params))

 .forEach((params) => { id = +params["id"]; });

 this.page = this.pageService.getPage(id);

 if (this.page === null) {

 this.page = <Page>{ Id: id };

 }

 }

 onDoneTap(): void {

 this.pageService.savePage(this.page);

 var options = <NavigationOptions>{

 clearHistory: true

 };

 this.routerExtensions.navigate(["list"], options);

 }

 onBirthDateTap(): void {

 let options: ModalDialogOptions = { // #C

 context: this.page.BirthDate == null ? // #C

 new Date() : this.page.BirthDate, // #C

 fullscreen: true, // #C

 viewContainerRef: this.viewContainerRef // #C

 }; // #C

 this.modalService.showModal(SelectDateComponent, options) // #D

 .then((dialogResult: any) => { // #E

 this.page.BirthDate = dialogResult; // #E

 let now = Date.now(); // #E

 let diff = Math.abs(now - this.page.BirthDate) / 1000 / 31536000; // #E

 this.page.Age = diff.toFixed(1); // #E

 }); // #E

 }

}

#A To open modals, we need to import several modules

#B The ModalService and ViewContainerRef modules need injected

#C The ModalDialogOptions has various properties used to configure how a modal is opened and the data

passed in

#D Modals are opened by passing the modal component class into showModal()

#E When the close callback is called, the code in then() is executed

A lot was added to the Detail component, so let’s start at the top with some new imports: ModalService,

and ModalDialogOptions, and ViewContainerRef. ModalService is used to open the modal dialog, and

 Branstein / The NativeScript Book 437

ModalDialogOptions contains various properties that configure how the dialog is opened and what data is

passed to the dialog. ViewContainerRef is a little more complicated, but essential.

DEFINITION ViewContainerRef is an Angular class that can track an Angular view. The exact details of

ViewContainerRef aren’t necessary for you to understand. We like to think of it as the reference to the

current component, and it’s used by the opened modal to know where to go back to when the modal is

closed. To learn more about this class, check out the Angular documentation at

https://angular.io/docs/ts/latest/api/core/index/ViewContainerRef-class.html.

In the constructor of the Detail component, you’ll notice that ModalService and ViewContainerRef

instances are being injected.

Next, the onBirthDateTap() function is added to handle the tap event for the birth date text box. A set

of modal dialog options is created using the ModalDialogOptions class:

let options: ModalDialogOptions = {

 context: this.page.BirthDate == null ?

 new Date() : this.page.BirthDate,

 fullscreen: true,

 viewContainerRef: this.viewContainerRef

};

The context property is used to pass data into the modal dialog, and you can see that we pass in the

pet’s currently selected birth date (or today’s date if the birth date is null). You’ll also see where the

ViewContainerRef class is passed to the modal dialog, like we explained earlier.

To open the select-date modal, we use the ModalService class instance injected into the constructor

and call the showModal() function: this.modalService.showModal(SelectDateComponent,

options).

NOTE The showModal() function is interesting because the first parameter isn’t an instance of a class,

but a reference to a class. It uses the reference to dynamically instantiate the SelectDateComponent

when called.

Attached to the showModal() function is another code block that runs when the select-date’s close

callback function is called: .then((dialogResult: any) => { ... }. The dialogResult variable

contains the result passed back through the close callback function.

NOTE You may not recognize the .then(() => {}) syntax attached to the showModal()

function, which is a way to asynchronously run code when the showModal() function finishes

running and the dialog is closed. We can do this because showDialog() returns a promise. We’ve

talked about promises before, so we won’t go into detail here. If you need a refresher, check out

Mozilla’s documentation on promises at https://developer.mozilla.org/en-

US/docs/Web/JavaScript/Reference/Global_Objects/Promise.

 Branstein / The NativeScript Book 438

Now that we’ve finished updating the app to use the select-date dialog, let’s run the Pet Scrapbook

Angular app. Figure 17.8 shows how the app navigates from the Detail component to the modal, then

back.

Figure 17.8 The Pet Scrapbook Angular app after adding the select-date modal to select a birth date.

17.5.2 Adding a gender selection modal

Now that you’ve learned how to add a modal to the Pet Scrapbook Angular app, let’s do the same for the

gender text box. Start by creating a select-gender component in the modals folder. When finished, you

should have a select-gender folder with three files in it: select-gender.component.html, select-

gender.component.css, and select-gender.component.ts.

Add the code from listing 17.21 to the select-gender.html file.

Listing 17.21 The select-gender.component.html file defines the UI markup for the select-gender

component

<StackLayout>

 <ListPicker [items]="genders" [(ngModel)]="gender"></ListPicker> // #A

 <Button class="btn btn-primary btn-rounded-sm btn-active"

 text="Done" (tap)="onDoneTap()">

 </Button>

</StackLayout>

#A List picker is bound to the selected gender property and to the collection of genders

The UI markup for the select-gender component is like the select-date component, except we’ve

substituted a list picker so we can select from the list of genders. You’ll notice that we’re using both one-

way and two-way databinding on the element. The items attribute is data-bound to the genders property

([items]="genders") using one-way databinding, and the selected item is data bound to the gender

property ([(ngModel)]="gender") using ngModel and two-way databinding.

Next, define the SelectGenderComponent class by adding the code from listing 17.22 to the select-

gender.component.ts file.

Listing 17.22 The select-gender.component.ts file

import { Component, OnInit } from "@angular/core";

 Branstein / The NativeScript Book 439

import { ModalDialogParams } from "nativescript-angular/modal-dialog";

@Component({

 selector: "ps-select-gender",

 moduleId: module.id,

 templateUrl: "./select-gender.component.html",

 styleUrls: ["./select-gender.component.css"]

})

export class SelectGenderComponent implements OnInit {

 gender: number;

 genders: Array<string> = ["Female", "Male", "Other"]; // #A

 constructor(private params: ModalDialogParams) {

 this.gender = this.genders.indexOf(params.context);

 }

 ngOnInit(): void {

 }

 onDoneTap(): any {

 this.params.closeCallback(this.genders[this.gender]); // #B

 }

}

#A The genders is a static array of genders, data-bound to the items attribute of the list picker

#B When the dialog closes, the selected gender is passed back to the Detail component

Just like the select-date component, the select-gender component injects the ModalDialogParams class

and retrieves the gender passed into the modal when it opens. The only change to point out is how the

genders property is created: it’s an array of strings. This is then bound to the items attribute of the list

picker, rendering three options to choose from: Female, Male, and Other. After the user picks a gender,

the close callback is called, passing back the selected value from the array.

The final two steps are to register the select-gender component as an entry component and open the

modal from the details component. Listings 17.23 and 17.24 show how the detail.module.ts and

detail.component.ts files are updated.

Listing 17.23 The detail.module.ts updated to register the select-gender modal as an entry

component

import { NgModule, NO_ERRORS_SCHEMA } from "@angular/core";

import { NativeScriptCommonModule } from "nativescript-angular/common";

import { NativeScriptFormsModule } from "nativescript-angular/forms";

import { DetailRoutingModule } from "./detail-routing.module";

import { DetailComponent } from "./detail.component";

import { SelectDateComponent } from "./modals/select-date/select-date.component";

import { SelectGenderComponent } // #A

 from "./modals/select-gender/select-gender.component"; // #A

@NgModule({

 imports: [

 DetailRoutingModule,

 NativeScriptCommonModule,

 Branstein / The NativeScript Book 440

 NativeScriptFormsModule

],

 declarations: [

 DetailComponent,

 SelectDateComponent,

 SelectGenderComponent // #B

],

 entryComponents: [

 SelectDateComponent,

 SelectGenderComponent /// #B

],

 schemas: [

 NO_ERRORS_SCHEMA

]

})

export class DetailModule { }

#A Import the modal

#B Declare and register the modal as an entry component

Listing 17.24 The detail.component.ts file updated to include code to open the select-gender modal

import { Component, OnInit, ViewContainerRef } from "@angular/core"; // #A

import { Page } from "../models/page";

import { RouterExtensions, PageRoute } from "nativescript-angular/router";

import { NavigationOptions } from "nativescript-angular/router/ns-location-strategy";

import { PageService } from "../services/page.service";

import { switchMap } from "rxjs/operators";

import { ModalDialogService, ModalDialogOptions } // #A

 from "nativescript-angular/modal-dialog"; // #A

import { SelectDateComponent }

 from "./modals/select-date/select-date.component";

import { SelectGenderComponent } // #A

 from "./modals/select-gender/select-gender.component"; // #A

@Component({

 selector: "ps-detail",

 moduleId: module.id,

 providers: [PageService],

 templateUrl: "./detail.component.html",

 styleUrls: ['./detail.component.css']

})

export class DetailComponent implements OnInit {

 page: Page;

 constructor(

 private routerExtensions: RouterExtensions,

 private pageService: PageService,

 private pageRoute: PageRoute,

 private modalService: ModalDialogService, // #B

 private viewContainerRef: ViewContainerRef) { } // #B

 ngOnInit(): void {

 let id: number;

 this.pageRoute.activatedRoute.pipe(

 switchMap(activatedRoute => activatedRoute.params))

 .forEach((params) => { id = +params["id"]; });

 Branstein / The NativeScript Book 441

 this.page = this.pageService.getPage(id);

 if (this.page === null) {

 this.page = <Page>{ Id: id };

 }

 }

 onDoneTap(): void {

 this.pageService.savePage(this.page);

 var options = <NavigationOptions>{

 clearHistory: true

 };

 this.routerExtensions.navigate(["list"], options);

 }

 onBirthDateTap(): void {

 let options: ModalDialogOptions = {

 context: this.page.BirthDate == null ? new Date() : this.page.BirthDate,

 fullscreen: true,

 viewContainerRef: this.viewContainerRef

 };

 this.modalService.showModal(SelectDateComponent, options)

 .then((dialogResult: any) => {

 this.page.BirthDate = dialogResult;

 let now = Date.now();

 let diff = Math.abs(now - this.page.BirthDate) / 1000 / 31536000;

 this.page.Age = diff.toFixed(1);

 });

 }

 onGenderTap(): void {

 let options: ModalDialogOptions = { // #C

 context: this.page.Gender,

 fullscreen: true,

 viewContainerRef: this.viewContainerRef

 };

 this.modalService.showModal(SelectGenderComponent, options) // #D

 .then((dialogResult: string) => { // #E

 this.page.Gender = dialogResult;

 });

 }

}

#A To open modals, we need to import several modules

#B The ModalService and ViewContainerRef modules need injected

#C The ModalDialogOptions has various properties used to configure how a modal is opened and the data

passed in

#D Modals are opened by passing the modal component class into showModal()

#E When the close callback is called, the code in then() is executed

 Branstein / The NativeScript Book 442

With the code changes made to the select-gender component, Detail component, and app module, it’s

time to run the Pet Scrapbook Angular app again. When you tap the gender text box, the select-gender

modal component will show, allowing you to select a gender (figure 17.9).

Figure 17.9 Tapping the gender text box on the details component now opens the select-gender component.

And there you have it: we’ve re-created almost every aspect of the Pet Scrapbook using Angular. You’ll

notice we left out taking a picture using the camera, but that’s on purpose. You’ve learned everything you

need to add that feature into the NativeScript-with-Angular version, so our challenge to you is to add that

into the app.

PLAY If you’re stuck, don’t forget to check out the Pet Scrapbook in the Playground. You can find the

updates made in this chapter at https://play.nativescript.org/?template=play-ng&id=GfqjRH&v=66.

17.6 Summary

In this chapter, you learned the following:

▪ How to bind properties and events with one-way databinding, and how two-way (ngModel)

databinding differs in syntax and functionality

▪ How service classes (and other Angular classes) are injected into constructors using dependency

injection

▪ How to pass data between components when navigating by using the RoutingExtensions class

 Branstein / The NativeScript Book 443

▪ How the PageRoute class and RxJS module can be used to read routing parameters when a

component is initialized

▪ That modal dialog components must be registered as entry components in the app module

17.7 Exercise

Using what you’ve learned about databinding, implement the Add Image button tap event handler, which

uses the camera module to take a picture using native hardware.

17.8 Solutions

To add in the camera functionality, import the camera and nativescript-geolocation modules into the

detail.component.ts file:

import * as camera from "nativescript-camera";

import * as geolocation from "nativescript-geolocation";

NOTE Remember that the geolocation NPM module is a NativeScript plugin. To install the plugin, you

will need to run tns plugin add nativescript-geolocation and tns plugin add

nativescript-camera in the CLI. If you’re using the Playground, you don’t need to worry about

adding these modules – they’re already included. Simply import and go.

Add two class-level variables to the DetailComponent class:

lat: number;

long: number;

Now that we have imported the necessary modules, add the Add Image button tap event handler as

shown in listing 17.25.

Listing 17.25 The Add Image button tap event handler to be added to the detail.component.ts file

import { ImageSource } from "image-source";

onAddImageTap(): void { // #A

 if (!geolocation.isEnabled()) {

 geolocation.enableLocationRequest();

 }

 camera.takePicture({ width: 100, height: 100, keepAspectRatio: true })

 .then((picture) => {

 let image = new ImageSource();

 image.fromAsset(picture).then((imageSource) => {

 this.page.Image = imageSource;

 this.page.ImageBase64 = this.page.Image.toBase64String("png");

 });

 geolocation.getCurrentLocation(null)

 .then((location) => {

 this.page.Lat = location.latitude;

 Branstein / The NativeScript Book 444

 this.page.Long = location.longitude;

 });

 });

 }

Finally, if you’re working on iOS (and not using the Playground), you’ll need to allow camera

permissions by updating the app/app_Resources/info.plist file and adding the following keys:

<key>NSCameraUsageDescription</key>

<string>This app needs access to the camera to take photos.</string>

<key>NSPhotoLibraryUsageDescription</key>

<string>This app would like to access the camera to take a picture of your

pet.</string>

NOTE After updating the keys in the Info.plist file, you will need to rebuild your app and restart the

run CLI command if you are using it. If you’re using the Playground, refresh your app, then enjoy!

PLAY Our final, final, final code for the Pet Scrapbook can be found at

https://play.nativescript.org/?template=play-ng&id=GfqjRH&v=67. Enjoy!

 Branstein / The NativeScript Book 445

Appendix

 Branstein / The NativeScript Book 446

A
Android emulator tips

If you have previously done mobile development on Android, you may be familiar with some of the

common annoyances of the Android emulator such as getting the emulator set up to run and the subpar

performance of the Android emulator. This appendix provides some general tips for working with the

Android emulator.

A.1 Emulator speed

The Android emulator is known for being notoriously slow (especially on Windows). One way to improve

the speed of the Android emulator is to install the Intel Hardware Accelerated Execution Manager (Intel

HAXM). By installing Intel HAXM the Android emulator can execute the application code directly on the

CPU of your development machine instead of having to first translate the code. Normally, Intel HAXM is

installed as part of Android Studio; however, because we are developing in NativeScript, we never had to

install Android Studio. To install Intel HAXM, follow the instructions at https://software.intel.com/en-

us/android/articles/intel-hardware-accelerated-execution-manager

A.2 Using Genymotion

Genymotion is an Android emulator alternative that you can use instead the official Android emulator.

Genymotion is free for personal use and has different for-pay licensing schemes for a larger team setting.

You can download and install Genymotion from https://www.genymotion.com/fun-zone/ (you will be

required to create an account to get the free personal use license).

 Branstein / The NativeScript Book 447

B
NativeScript CLI quick reference

The official NativeScript command line interface (CLI) reference is online at

https://www.npmjs.com/package/nativescript. But, if you’re looking for a quick reference, read on! You

may notice some commands we left out of the book. That’s because they’re commands we don’t use every

day.

B.1 Creating apps

When you need to create a new NativeScript app, you’ll start with the tns create command. Table B.1

details the various options.

Table B.1 NativeScript CLI commands used when creating apps

CLI Command Description

tns create <app-name> Creates a new cross-platform NativeScript app named

<app-name>. A folder will be created with the name of

your app, and the NativeScript app structure described

in chapter 3 will be added. This command also creates a

vanilla NativeScript app, using JavaScript.

tns create <app-name>

 --template typescript

Creates a new vanilla NativeScript app using TypeScript

(instead of JavaScript).

tns create <app-name>

 --template angular

Creates a new NativeScript-with-Angular app using

TypeScript and Angular.

tns create <app-name>

 --tsc

Shortened form of --template typescript.

tns create <app-name>

 --ng

Shortened form of --template angular.

 Branstein / The NativeScript Book 448

tns create <app-name>

 --template <local-or-remote-path>

--template can also be used to reference a local or

remote template. Include a file system directory or a

Github .git URL.

tns create <app-name>

 --copy-from <directory>

Creates a new project from an existing project in the

directory specified. This is a great way to copy an

existing project, while giving it a new name.

B.2 Adding the Android and iOS platforms

A NativeScript app doesn’t do much without adding the Android or iOS platform. Use these commands to

add a platform. If you need a reminder of how the tns platform command affects your NativeScript

app files and folders, check out chapter 3. Table B.2 detailed the various platform commands available in

the CLI.

Table B.2 NativeScript CLI commands used when adding native platforms

CLI Command Description

tns platform add android Adds the Android platform files to your app

tns platform add ios Adds the iOS platform files to your app

tns platform remove android Removes the Android platform files from your app

tns platform remove ios Removes the iOS platform files from your app

TIP Don’t be afraid to remove the Android or iOS platform files from you app. Removing these files

doesn’t affect the source code of your app. If you think your app isn’t running correctly, remove your

platforms and add them back. It only takes a few seconds.

B.3 Building apps

Chapters 12 and 13 describe the two-phase process for transforming your app’s source code into native

Android and iOS projects: the prepare phase and the build phase. These phases use the tns prepare

and tns build CLI commands, detailed in table B.3.

Table B.3 NativeScript CLI commands used when preparing and building apps

CLI Command Description

tns prepare android Copies Android-specific settings from the

App_Resources folder (and your app’s source code) into

the native Android platform folder. If the app doesn’t

have the Android platform installed, the CLI will

automatically run tns platform add android.

 Branstein / The NativeScript Book 449

tns prepare ios Copies iOS-specific settings from the App_Resources

folder (and your app’s source code) into the native iOS

platform folder. If the app doesn’t have the Android

platform installed, the CLI will automatically run tns

platform add ios.

tns build android Invokes the Android SDK to compile the files in the

Android platform folder into an Android app. This create

a debug version of the app.

tns build android

 --release

 --key-store-path <key-store-path>

 --key-store-password <key-store-

password>

 --key-store-alias <key-store-alias>

 --key-store-alias-password <key-

store-alias-password>

Builds a release version of an Android app. Apps

submitted to the Google Play store must be compiled

with the --release flag. As outlined in chapter 12, when

an app is compiled in release mode, additional key store

parameters are required to digitally sign the app.

tns build ios Invokes the iOS SDK to compile the files in the iOS

platform folder into an iOS app. If no iOS device is

attached to your computer, the app is built for an

emulator. Otherwise it is built for a device.

tns build ios

 --emulator

Compiles an iOS app for an emulator. Use this when an

iOS device is attached to your computer and you want to

force the compilation for an emulator.

B.4 Preparing and eploying apps

You can use Android emulators, iOS simulators, and real devices to test your app during development.

Use the CLI commands detailed in table B.4 during your testing process.

Table B.4 NativeScript CLI commands used when deploying apps to devices, emulators, and simulators

CLI Command Description

tns device Displays a list of connected devices to your computer.

Physical devices and Android emulators are enumerated

by this command. Each device has a device number

assigned by the CLI.

tns deploy android Deploys the app to the first Android device detected by

tns device. If your app hasn’t been built, the CLI will

first invoke tns build android to build your app.

 Branstein / The NativeScript Book 450

tns deploy android

 --device #

Specifies a specific Android device to deploy your app

to. Useful if you have an emulator and/or multiple

physical devices attached.

tns deploy ios Deploys the app to the first iOS device detected by tns

device. If no physical devices are detected, the app is

deployed to the iOS simulator. If your app hasn’t been

built, the CLI will first invoke tns build ios to build

your app. See our notes below about deploying to

physical iOS devices!

tns deploy ios

 --device #

Specifies a specific iOS device to deploy your app to.

Useful is you have a simulator and/or multiple physical

devices attached.

tns run android Shorthand for tns prepare android, tns build

android, and tns deploy android.

tns run android

 --device #

Just like tns run android, but for a specific device.

tns run ios Shorthand for tns prepare ios, tns build ios,

and tns deploy ios.

tns run ios

 --device #

Just like tns run ios, but for a specific device.

tns resources generate

icons <path to image>

Generate all icons for Android and iOS based on the

specified image.

WARNING If you’re trying to deploy an iOS app to a physical device, you need to register your device

in the iOS Developer Center and sign your app with a digital signature. Chapters 13 and 14 describe

this process in detail. If you want the abridged version, check out this brief blog post on iOS code

signing: http://seventhsoulmountain.kripajay.com/2013/09/ios-code-sign-in-complete-

walkthrough.html.

TIP We’ve mentioned removing the Android and iOS platforms previously, but it’s worth pointing out

that a combination of tns remove platform android|ios and tns run android|ios is a

shortcut for fully-resetting your app’s native platform code and testing it on a device or emulator. The

tns run command will add the necessary platform, prepare, build, and deploy it automatically. This

isn’t something you’ll have to do regularly, but keep it in your back pocket.

 Branstein / The NativeScript Book 451

C
NativeScript conventions

Conventions exist everywhere in the real world and make our lives easier by reducing the number of

decisions you need to make daily. Take learning to drive a car as an example – conventions (or rules of

the road) are everywhere: drive in the right-hand lane, red lights mean stop, a car with a left blinking tail

light means it’s going to turn left, and flashing lights or signs generally mean caution – watch out! Without

these conventions, you could drive, but it may not be nearly as safe or productive as you’d like.

Just like the rules of the road make driving easier, software development conventions make being a

developer easier. But, understanding conventions is important for reasons other than making development

easier. Conventions establish a standard or baseline for how code should be written and organized. When

writing software, you should expect others will need to update, add to, or maintain the code you have

written. By following agreed-upon standards and conventions, your code is more maintainable (which

should be one of your goals as a developer). Often, developers feel their job is to be the fastest developer

(with a goal of writing the fewest lines of code), but that’s wrong. Instead, you should be focusing on

writing descriptive, easy-to-read code. In doing so, you allow other developers to better understand the

purpose of your code, thus making it more maintainable.

C.1 Understanding NativeScript conventions

NativeScript comes with its own conventions, which make developing mobile apps simpler, more efficient,

and less demanding on you. But there’s more because these conventions aren’t optional – if you don’t

follow NativeScript’s conventions, your apps won’t run. As a result, it’s important for you to understand

the conventions imposed on you by the NativeScript runtime. The faster you learn the conventions, the

faster you’ll be able to create your second, third, and fourth app. As you learn these conventions, you

may find yourself referring to this book or the official NativeScript documentation quite a bit. But with

each app you write, you’ll become more efficient and these conventions will become second nature.

The NativeScript conventions are mixture of file-naming conventions (to organize your app’s user

interface and business logic), platform-specific conventions (enabling you to target bits of code and user

interface components for a specific mobile platform), and folder structure conventions (to separate

 Branstein / The NativeScript Book 452

Android and iOS configuration files). You’ve already seen many of these conventions in this chapter, but

let’s take a closer look at each.

C.1.1 File-naming conventions and pages

In the first part of chapter 3, you learned how similarly-named files (such as main-page.xml and main-

page.js) come together to form a cohesive unit, called a page.

TIP When you’re developing and debugging your NativeScript app, it can be easy to misspell file names.

One of the first things I do when an app isn’t running as expected is to ensure each page is named

properly and has a <page-name>.xml and <page-name>.js file (and <page-name>.css, if you have

provided page-specific CSS styles).

As a reminder, when your NativeScript app runs and is told to load a page named main-page, the

NativeScript runtime knows (by convention) to search for three files: an XML file, a CSS file, and a

JavaScript file named main-page. The following code snippet from the app.js file and figure C.1 show how

the NativeScript runtime uses this file-naming convention to start your app.

application.run({ moduleName: "app-root" });

<Frame defaultPage="main-page"></Frame>

Figure C.1 When the main-page page is referenced, the NativeScript runtime looks for and loads files named main-

page.xml, main-page.css, and main-page.js.

This convention is powerful, and makes your code easier to read and write. For example, in HTML

applications, every HTML file contains tags to include external JavaScript and CSS files. Have you ever

thought how cumbersome this is? NativeScript makes your life easier. If you want to load JavaScript and

CSS files with your user interface XML files, just name them the same.

Not every page you create will have an XML, CSS, and JS file. At minimum, you will have an XML user

interface page, but you may not need to define any page-specific styles or business logic. Something nice

about this convention is that you don’t need to worry about missing CSS or JS files. When you reference

a page by its name (main-page), the NativeScript runtime searches for each file (XML, CSS, and JS). If

one of the files doesn’t exist, it skips the file and continues, loading as many of the files as it can.

This convention is easy to understand and implement, plus it creates a more readable app, as shown

in figure C.2.

 Branstein / The NativeScript Book 453

Figure C.2 Similarly named XML, CSS, and JavaScript files make it easy to see there are three distinct pages in this

NativeScript.

Because of the similarly named files, it’s easy to see there are three pages, each with three related

files.

C.1.2 Platform-specific conventions

Although a goal of using NativeScript is to write cross-platform apps with the same code base, this doesn’t

mean an Android app and an iOS app will share 100% of the user interface and business logic code. In

fact, you may find circumstances where you may want to have different user interfaces or different

business logic rules, depending on your platform.

NOTE One example for not sharing code is to take advantage of a platform-specific hardware function.

For example, consider iOS’s Touch ID. Touch ID is a fingerprint reader that used to verify a person’s

identity. Some Android devices (like the Google Pixel) have integrated fingerprint readers also, but

iOS’s Touch ID and Android fingerprint readers are inherently different. If your app needed a user to

validate their identity, iOS-specific code may leverage Touch ID, whereas Android code may use an

integrated fingerprint reader (if present) or fall back to a username and password.

NativeScript provides several mechanisms for you to choose from if you’re trying to separate your user

interface or business logic code by platform. Let’s look at each.

SPLITTING XML FILES TO VARY BY PLATFORM

The first way to provide platform-specific user interface code is to split your XML file into two separate

files. Once split, you will place Android-specific user interface code in one file, and iOS-specific code in a

 Branstein / The NativeScript Book 454

second file. To differentiate the two files, you use another file-naming convention, by adding .android or

.ios to the file name.

Let’s assume you are starting with a platform-agnostic page currently displaying a button with the

following XML code: <Button text=“Tap Here!” />. Figure C.3 shows you the user interface code

and resulting platform rendering on Android and iOS of the button.

Figure C.3 Platform agnostic user interface markup within a single file will display the same button on both Android and

iOS.

You’ll notice the main-page.xml file is the only file included in the app; therefore, both Android and

iOS platforms will share the user interface code.

Now, imagine you would like to customize the button’s text based on the platform. Figure C.4 shows

how this platform-specific file-naming convention can be used to split the main-page example you saw

earlier in this chapter.

Figure C.4 The main-page.xml file has been split into two separate XML files: main-page.android.xml and main-

page.ios.xml.

Using the .android and .ios file-naming convention, the original main-page.xml file has been

duplicated, with the original and duplicate renamed to main-page.android.xml and main-page.ios.xml.

<Button text="Tap Here for Android! " />

<Button text="Tap Here for iOS! " />

The first line of XML code is placed in the Android-specific file, and the second line is placed in the iOS-

specific file. Figure C.5 show the results of splitting the main-page.xml file into platform-specific files and

changing the button text accordingly.

 Branstein / The NativeScript Book 455

Figure C.5 By using the platform-specific file-naming convention, the Android and iOS apps have different button text.

When you use the platform-specific file-naming convention of .android and .ios, NativeScript

automatically associated the correct user interface code with the appropriate platform. The Android app

will load the main-page.android.xml file, displaying the Android-specific button text, and the iOS app will

load the main-page.ios.xml file, displaying the iOS-specific button text.

As you can see, it’s easy to create platform-specific user interface views: create two XML files with the

.android and .ios file-naming convention. Although this is easy, this approach requires you to duplicate

the user interface for each platform. Imagine a complex page with images, buttons, and text. Maintaining

two separate pages just so you can change the text on a button seems cumbersome. So, using this

approach for supporting platform-specific user interface customizations only makes sense when you’re

changing a large portion of the user interface.

SHARING XML FILES TO VARY BY PLATFORM

If you have a relatively small number of user interface customizations, NativeScript offers a simple way

of customizing the user interface. Instead of splitting your XML file into two files, you maintain a single

XML file, but add additional XML markup to the file to identify platform–specific customizations. This

approach is shown in Listing C.1.

Listing C.1 Platform-specific user interface customizations using XML markup

<android> //#A

 <Button text="Tap Here for Android!" /> //#A

</android> //#A

<ios> //#B

 <Button text="Tap Here for iOS!" /> //#B

</ios> //#B

#A By using the <android> markup, this button will only be displayed on devices running Android

#B User interface markup within an <ios> tag will only be displayed on devices running iOS

By using the platform-specific XML markup <android> and <ios> within your app, NativeScript will

selectively display user interface code within each tag on the appropriate platform. Figure C.6 shows the

results of using the <android> and <ios> tags.

 Branstein / The NativeScript Book 456

Figure C.6 Using platform-specific <android> and <ios> tags, the Android device displays Android-specific code, and

the iOS device displays iOS-specific code.

SEPARATING JAVASCRIPT FILES TO VARY BY PLATFORM

Earlier in this chapter, you learned how to create platform-specific user interface pages by using the

.android and .ios file name convention. The same concept applies to your business logic code written in

JavaScript.

Let’s assume you want to create a button via JavaScript code and set the text of the button based on

the platform, as shown in listing C.2.

Listing C.2 Creating a button via JavaScript

var buttonModule = require("ui/button"); //#A

var button = new buttonModule.Button(); //#B

button.text = "Tap Here!"; //#B

#A import the button module, saving a reference in the buttonModule variable

#B create a native button using JavaScript and assigning text

Right now, it’s still not important that you understand everything happening in this code snippet, because

I will cover everything in future chapters. What is important is that you understand that it’s possible to

create a button and specify the text property via code.

Consider the same page described earlier in this chapter (main-page). If the code in listing C.2 exists

within main-page.js, NativeScript produces identical buttons that are platform agnostic. You can see this

in figure C.7.

 Branstein / The NativeScript Book 457

Figure C.7 Platform agnostic JavaScript code within a single file will display the same button on both Android and iOS.

To create platform-specific JavaScript code, the main-page.js file needs split into two files with a

.android and .ios file-naming convention applied. Listing C.3 and C.4 illustrate the code differences

between the two files.

Listing C.3 Platform-specific code customizations using JavaScript from main-page.android.js

var buttonModule = require("ui/button");

var button = new buttonModule.Button();

button.text = "Tap Here for Android!";

Listing C.4 Platform-specific code customizations using JavaScript from main-page.ios.js

var buttonModule = require("ui/button");

var button = new buttonModule.Button();

button.text = "Tap Here for iOS!";

You’ll notice the Android and iOS code looks almost identical, except for the value assigned to the text

property of the button. Following the .android and .ios file-naming convention, the first code portion is

placed into main-page.android.js, and the second code portion is placed into main-page.ios.js. When the

code runs on each platform, you get customized buttons (figure C.8).

Figure C.8 By using the platform-specific file-naming convention on JavaScript files, the Android and iOS apps have

different button text.

Using this approach to write platform-specific business logic code has the same shortcomings as

splitting our user interface code into separate files: code duplication and decreased maintainability.

Truthfully, it’s painful to use the file-naming convention and duplicate much of your code. Wouldn’t it be

nice if there were some way to share code between platform-specific JavaScript files? Luckily, there is!

 An additional file-naming convention NativeScript uses for JavaScript files is the .common convention.

This convention works in conjunction with JavaScript files using the .android and .ios convention. I like to

think of the .common convention like base or foundational code – when NativeScript interprets your app

and comes across JavaScript files adhering to the .common, .android, and .ios file-naming convention,

the .common JavaScript file is loaded first, creating a base (or foundation), followed by a secondary load

 Branstein / The NativeScript Book 458

of the platform-specific .android or .ios file. Figure C.9 shows how the combination of .common, .android,

and .ios.

Figure C.9 The platform-agnostic main-page.js file is split into 3 files: main-page.common.js, main-page.android.js, and

main-page.ios.js. On Android, main-page.common.js and main-page.android.js are combined. On iOS, main-

page.common.js and main-page.ios.js are combined.

To use the .common file-naming convention with a platform-agnostic main-page.js file, you split the

file into three files named main-page.common.js, main-page.android.js, and main-page.ios.js. When your

app runs on Android, the main-page.common.js file is combined with the main-page.android.js file, and

main-page.common.js is combined with main-page.ios.js on iOS.

Listing C.5 shows an example of how you may structure your JavaScript code to take advantage of

the .common file-naming convention.

Listing C.5 How to use the .common file-naming convention to create platform-specific JavaScript

code and reduce the amount of duplicate code written

var buttonModule = require("ui/button"); //#A

var button = new buttonModule.Button(); //#A

button.text = GetButtonText(); //#A

function GetButtonText() { //#B

 return "Tap Here for Android!"; //#B

} //#B

function GetButtonText() { //#C

 return "Tap Here for iOS!"; //#C

} //#C

#A Base (or foundational) code is placed in main.common.js. Note how the button text is now set via a function.

This function will not be defined in main-page.common.js, but instead in the platform-specific files

#B Found in the main-page.android.js file, this Android-specific code returns the button text for Android devices

#C Found in the main-page.ios.js file, this code return platform-specific button text for iOS

When using the .common file-naming convention your code will need to be changed slightly to abstract

or pull-out code that should be placed into the .common file. Listing C.5 shows how main-page.common.js

has the shared base code to create a button and set the text of the button. You will notice the button’s

text will now be set by a function that is not present within the main-page.common.js file. Instead, the

GetButtonText() function is defined and implemented in main-page.android.js and main-page.ios.js.

Each implementation is then customized to accommodate its specific platform.

 Branstein / The NativeScript Book 459

Now that you’ve seen how to use the .common file-naming convention to reduce the amount of

duplicate code written for platform-specific JavaScript files, you see how splitting code between files can

be easy and relatively efficient.

SHARING JAVASCRIPT FILES TO VARY BY PLATFORM

Although splitting platform-specific JavaScript code into .common, .android, and .ios files is easy to do,

there’s an even easier method for writing platform-specific JavaScript code. You don’t have to split your

JavaScript files to write platform-specific code. Instead, you can use global JavaScript variables to

dynamically determine whether your app is running on Android or iOS. Listing C.6 shows how to use this

approach by creating a button and setting the text based on the platform.

Listing C.6 Using the android and ios global variables to dynamically determine the device

platform and write platform-specific code

var buttonModule = require("ui/button"); //#A

var button = new buttonModule.Button(); //#A

if (android) { //#B

 button.text = "Tap Here for Android!"; //#B

} //#B

if (ios) { //#C

 button.text = "Tap Here for iOS!"; //#C

} //#C

#A Similar code is used to create a button

#B The global variable android is used. If android is not NULL, the button text is set to an Android-specific value

#C The global variable ios is used. If ios is not NULL, the button text is set to an iOS-specific value

When NativeScript runs on Android and iOS, global JavaScript variables named android and ios,

respectively, are injected into the JavaScript virtual machine running within your app. To check the

platform, a simple if (android) and if (ios) statement can be used. In listing C.6, I use this

approach to set the button’s text property after detecting which platform the app is running on.

Using the global android and ios variables is a quick way to add in short, concise platform-specific

code sections. I like it because it gives you a lot of flexibility without the hassle of splitting up your

JavaScript file into separate .android and .ios files.

The convenience of using the global variables can be quickly overused, however. If you have large

amounts of platform-specific code sections, your code may be difficult to read and understand. I don’t

feel there’s specific guidance on when you should switch from using the global variables to splitting files.

But, if you have a couple of global variables references in your code, you’re probably ok to stick with that

approach. On the other hand, if you have a dozen uses of global variable references, you may want to

consider splitting your code into separate files.

What about that gray area when you have 4 to 8 global variable references? That’s up to you; if you’ve

structured your code well and it’s very readable, stick with the global variables. Otherwise, split it out.

Follow your instincts, and if you’re in doubt, ask someone else for their opinion.

SEPARATING USER INTERFACE CSS FILES TO VARY BY PLATFORM

As you have seen with user interface (XML) and business logic (JavaScript) files, you can also use the

.android and .ios file-naming convention to write platform-specific user interface styles. In practice,

 Branstein / The NativeScript Book 460

separating a CSS file into two platform-specific CSS files with a slightly different name works exactly like

it works with XML files, so I’m not going into detail. Instead, I want to call out that it is possible to create

platform-specific CSS files by naming your CSS files with .android and .ios.

C.1.3 Screen size conventions

Similar to the .android and .ios file-naming conventions discussed earlier in this chapter, NativeScript also

provides support to tailor which files will be loaded based on screen size by changing the name of a file.

The screen size file-naming convention allows you to easily create different user interfaces to target

multiple device sizes.

While you’re learning about this convention, I’m going to introduce you to a concept called device-

independent pixels (dp for short). Device-independent pixels can be a complex topic and work in subtly

different ways across Android and iOS. Although it’s not important that you understand the intimate details

of device-independent pixels, you should know that it’s a way of describing the physical size (width and

height) of a mobile device’s screen, without describing the number of pixels.

TIP Understanding device independent pixels (dp) and their relating concepts of dots, points, DPI, and

display scaling can be confusing on mobile devices because Android and iOS handle them differently.

Although an in-depth discussion of these concepts is not covered in this book, you’ll understand how

these concepts relate to each other by reading this blog post: http://blog.fluidui.com/designing-for-

mobile-101-pixels-points-and-resolutions/.

In general, Android and iOS define and classify their screens to have ~160 dp per inch. The number

is different on each platform, but thinking at 160 dp per inch is good enough for now.

Although the lines between phone and tablet are getting harder to differentiate because of larger and

larger phone screens, you can use the ~160 dp per inch guideline to tell what form factor your device is.

The generally-accepted rule is if a device’s smaller dimension (width or height) is more than 600 dp

(~3.75 inches), the device is considered a tablet.

As we continue to explore NativeScript’s screen size convention, just keep in mind that device-

independent pixels are a method for measuring screen size.

To use the screen size convention, you can add one of the following naming conventions to your file:

▪ minW#—Page displayed if the device width is at least # dp

▪ minH#—Page displayed if the device height is at least # dp

▪ minWH#—Page displayed if the smaller of dimensions (width or height) is at least # dp

Assuming I have two devices (a phone and a tablet) and want to display two different versions of

main-page.xml based on the form factor, I create two versions of the page, named main-

page.minWH600.xml and main-page.xml. Main-page.minWH600.xml is displayed on the tablet, and main-

page.xml is displayed on the phone. Let’s look at an example where I have two different buttons displayed

using this convention. The first line of code is contained within the main-page.minWH600.xml file, and

the second within the main-page.xml file. Figure C.10 shows the results when run on a mobile device.

<Button text=“Tablet” />

 Branstein / The NativeScript Book 461

<Button text=“Phone” />

Figure C.10 A phone and tablet displaying different pages based upon the file-naming convention used. NativeScript

will display the main-page.minWH600.xml file on the tablet, and the main-page.xml file on the phone.

When NativeScript loads the main-page page, it detects the screen size in device-independent pixels

and chooses the appropriate file to display. Tablets are greater than 600 dp, so main-page.minWH600.xml

is displayed, thus showing a button with the text of “Tablet.” Phones, which have a screen size less than

600 dp, will display main-page.xml, and a button with the text of “Phone.”

C.1.4 Screen orientation conventions

Another common need when developing apps for mobile devices is to vary the user interface based upon

the screen orientation. With NativeScript, you can use the .port and .land file-naming conventions to

account for holding your device in a portrait or landscape position. Figure C.11 shows how this is done by

placing <Button text="Portrait" /> in the main-page.port.xml file, and <Button

text=“Landscape” /> in the main-page.land.xml file.

Figure C.11 A phone in a portrait and landscape position. The portrait position displays the main-page.port.xml file and

the landscape position will display the main-page.land.xml file.

 Branstein / The NativeScript Book 462

This file-naming convention works just like the other conventions you learned about in this chapter.

By naming your page file main-page.port.xml, NativeScript displays the page when the mobile device is

placed in a portrait position. Devices placed in a landscape position will display main-page.land.xml.

17.8.1 Chaining conventions

You’ve just learned about several file-naming conventions that can be used to control the screen

orientation, screen size, and targeted platform. But, in all our examples, we only applied one convention

at a time. What if you need to apply multiple conventions at once?

TIP File-naming conventions can be chained (or concatenated) together to target a complex

combination of traits.

For example, to create a landscape page for Android tablets, name the page main-

page.land.minWH600.android.xml.

