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Abstract. In this paper we present approaches to explain document-
based drift. Document-based drift is a special case of general drift (or
concept shift), where it is assumed that drift occurs predominantly in
single documents and is not distributed in the entirety of documents. Our
contributions comprise two major parts. Firstly, we provide a benchmark
to evaluate text-document-based drift detection approaches. Secondly, we
provide a pipeline (or rather workflow) to evaluate document-based drift
detection approaches. In addition, we propose two unsupervised drift
detection approaches for text documents represented via embeddings,
and explain text-based drift on token-level. The current state of this
paper is a draft version.

1 Introduction

This work is structured as follows: In Section [2] we present a benchmark for
document-based drift as well as the conducted data cleaning and selection of doc-
uments. Sec. [3]introduces a pipeline to generate visual explanations of detected
document-based drift. In our application it is based on document embeddings.
Sec. [4] presents results of the developed approaches applied to the benchmark.

2 AMORE: A Document-Based Drift Benchmark

The AMORE (Amazon Movie Reviews) benchmark is a collection of document-
based benchmark datasets to compare drift explanation approaches. The single
benchmark datasets consist of two sets of unlabeled texts. Each first set forms
a base, which represents the respective initial setting. In each second set, a
subset of the documents semantically differ from the documents of the first set
and contain document-based drift. In the following, we describe the single data
processing parts used to compute the final benchmark datasets. We publish
the datasets after each processed step to enable researchers to build upon the
respective dataset.
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The source ﬁleﬂ contains 7,911,684 movie reviews from Amazon. It was pub-
lished in [I] For each review, the following data fields are available: product ID,
user ID, profile name, helpfulness (e.g. 9/9) score (ranging from 1 to a good
score of 5), time, summary (a short text) and text (a long text). In order to as-
semble text sets based on semantical differences, we limit the data on the fields
summary, text and score.

As the scores and text-based content of the underlying user-generated data
showed semantic differences (e.g. good score and negative texts), we used a
set of positive and negative words to filter the reviews. For this, positive-rated
reviews (score 5 or 4) were only included if the number of positive words (each
word counted only one time) as well as the general occurrences of positive words
(each word occurrence counted multiple words) were higher as the negative ones.
For negative reviews (score 1 or 2), the opposite cases were filtered. Neutral
ratings (score 3) were also included, but have not been used afterwards. Overall,
5,483,175 reviews were available after the filtering procedure.

Additionally, we deduplicated the reviews based on the summaries (see Fig. [5))
and created two distributions to be compared to each other.

3 Drift Explanation Approaches and Evaluation

In order to explain document-based drift, we conducted a pipeline (see Sec. .
In addition, we developed two drift detectors. Based on embeddings, the Poly-
gons Detector (see Sec. reduces embedding dimensions and extracts seman-
tical 2D-outliers. The Hyperboxes approach (see Sec. uses each embeddings
dimension to detect semantical outliers.

3.1 Pipeline

The pipeline is described in Fig.
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Fig. 1: Explanation and Evaluation pipeline
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3.2 Polygons Detector

The 2D-polygons approach is described in Fig. [2]
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Fig. 2: 2D-polygons approach

3.3 Hyperboxes
The Hyperboxes approach is described in Fig.
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4 Results

We evaluated the Hyperboxes approach on document-level by applying it to
BERT and Doc2Vec embeddings and the AMORE-1 benchmark dataset. The
Hyperboxes approach using BERT embeddings as source data leads to an accu-
racy of 0.83 and Doc2Vec embeddings produced an accuracy of 0.58 (see Tab. .

Table 1: Evaluation: Detected documents in the Hyperboxes approach
Doc2Vec BERT

Positives 1.000 1.000
Negatives 9.000 9.000
Detected 4.535 816
TP 691 47
FP 3,844 769
TN 5,156 8,231
Accuracy 0.5847 0.8278

Based on the detected documents, we extracted the relevant tokens and cre-
ated a visualization (see Fig. Ié—_l[)
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Fig. 4: Explanation of the Hyperboxes approach on token-level
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