Abstract
Light pollution has increased globally, with 80% of the total population now living under light-polluted skies. In this Review, we elucidate the scope and importance of light pollution and discuss techniques to monitor it. In urban areas, light emissions from sources such as street lights lead to a zenith radiance 40 times larger than that of an unpolluted night sky. Non-urban areas account for over 50% of the total night-time light observed by satellites, with contributions from sources such as transportation networks and resource extraction. Artificial light can disturb the migratory and reproductive behaviours of animals even at the low illuminances from diffuse skyglow. Additionally, lighting (indoor and outdoor) accounts for 20% of global electricity consumption and 6% of CO2 emissions, leading to indirect environmental impacts and a financial cost. However, existing monitoring techniques can only perform a limited number of measurements throughout the night and lack spectral and spatial resolution. Therefore, satellites with improved spectral and spatial resolution are needed to enable time series analysis of light pollution trends throughout the night.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
Data availability
The Radiance Light Trends webtool used to obtain the data plotted in Fig. 5 is available at https://doi.org/10.5880/GFZ.1.4.2019.001.
Change history
03 July 2024
A Correction to this paper has been published: https://doi.org/10.1038/s43017-024-00577-3
References
Hänel, A. et al. Measuring night sky brightness: methods and challenges. J. Quant. Spectrosc. Radiat. Transf. 205, 278–290 (2018).
Pun, C. S. J., So, C. W., Leung, W. Y. & Wong, C. F. Contributions of artificial lighting sources on light pollution in Hong Kong measured through a night sky brightness monitoring network. J. Quant. Spectrosc. Radiat. Transf. 139, 90–108 (2014).
Gaston, K. J. & Sánchez de Miguel, A. Environmental impacts of artificial light at night. Ann. Rev. Environ. Resour. 47, 373–398 (2022).
Owens, A. C. et al. Light pollution is a driver of insect declines. Biol. Conserv. 241, 108259 (2020).
Johnston, D. W. & Haines, T. P. Analysis of mass bird mortality in October, 1954. Auk 74, 447–458 (1957).
Doren, B. M. V. et al. High-intensity urban light installation dramatically alters nocturnal bird migration. Proc. Natl Acad. Sci. USA 114, 11175–11180 (2017).
Korner, P., von Maravic, I. & Haupt, H. Birds and the ‘Post Tower’ in Bonn: a case study of light pollution. J. Ornithol. 163, 827–841 (2022).
Ffrench-Constant, R. H. et al. Light pollution is associated with earlier tree budburst across the United Kingdom. Proc. R. Soc. B Biol. Sci. 283, 20160813 (2016).
Lian, X. et al. Artificial light pollution inhibits plant phenology advance induced by climate warming. Environ. Pollut. 291, 118110 (2021).
Meng, L. Green with phenology. Science 374, 1065–1066 (2021).
Knop, E. et al. Artificial light at night as a new threat to pollination. Nature 548, 206–209 (2017).
Rydell, J., Eklöf, J. & Sánchez-Navarro, S. Reply to ‘Comment on age of enlightenment: long-term effects of outdoor aesthetic lights on bats in churches’ by T. Onkelinx. R. Soc. Open Sci. 4, 171630 (2017).
Camacho, L. F., Barragàn, G. & Espinosa, S. Local ecological knowledge reveals combined landscape effects of light pollution, habitat loss, and fragmentation on insect populations. Biol. Conserv. 262, 109311 (2021).
Degen, T. et al. Street lighting: sex-independent impacts on moth movement. J. Anim. Ecol. 85, 1352–1360 (2016).
Moore, M. V., Pierce, S. M., Walsh, H. M., Kvalvik, S. K. & Lim, J. D. Urban light pollution alters the diel vertical migration of Daphnia. Int. Ver. Theor. Angew. Limnol. Verh. 27, 779–782 (2000).
Shith, S. et al. Does light pollution affect nighttime ground-level ozone concentrations? Atmosphere 13, 1844 (2022).
Tsao, J. Y. & Waide, P. The world’s appetite for light: empirical data and trends spanning three centuries and six continents. LEUKOS 6, 259–281 (2010).
Almeida, A. D., Santos, B., Paolo, B. & Quicheron, M. Solid state lighting review — potential and challenges in Europe. Renew. Sustain. Energy Rev. 34, 30–48 (2014).
Cinzano, P. & Falchi, F. Quantifying light pollution. J. Quant. Spectrosc. Radiat. Transf. 139, 13–20 (2014).
Barà, S., Bao-Varela, C. & Falchi, F. Light pollution and the concentration of anthropogenic photons in the terrestrial atmosphere. Atmos. Pollut. Res. 13, 101541 (2022).
Gaston, K. J. et al. Pervasiveness of biological impacts of artificial light at night. Integr. Comp. Biol. 61, 1098–1110 (2021).
Sánchez de Miguel, A., Bennie, J., Rosenfeld, E., Dzurjak, S. & Gaston, K. J. First estimation of global trends in nocturnal power emissions reveals acceleration of light pollution. Remote Sens. 13, 3311 (2021).
Falchi, F. et al. The new world atlas of artificial night sky brightness. Sci. Adv. 2, e1600377 (2016).
IEA. Tracking SDG7: the energy progress report, 2022 (IEA, 2022).
IEA. DG7: data and projections (IEA, 2023).
Fotios, S. & Gibbons, R. Road lighting research for drivers and pedestrians: the basis of luminance and illuminance recommendations. Light. Res. Technol. 50, 154–186 (2018).
Edensor, T. The gloomy city: rethinking the relationship between light and dark. Urban Stud. 52, 422–438 (2013).
Morgan-Taylor, M. Regulating light pollution: more than just the night sky. Science 380, 1118–1120 (2023).
Welsh, B. C., Farrington, D. P. & Douglas, S. The impact and policy relevance of street lighting for crime prevention: a systematic review based on a half-century of evaluation research. Criminol. Public Policy 21, 739–765 (2022).
Perkins, C. et al. What is the effect of reduced street lighting on crime and road traffic injuries at night? A mixed-methods study. Public Health Res. 3, 1–108 (2015).
Marchant, P. R. & Norman, P. D. To determine if changing to white light street lamps improves road safety: a multilevel longitudinal analysis of road traffic collisions during the relighting of Leeds, a UK city. Appl. Spat. Anal. Policy 15, 1583–1608 (2022).
Levin, N. et al. Remote sensing of night lights: a review and an outlook for the future. Remote Sens. Environ. 237, 111443 (2020).
Combs, C. L. & Miller, S. D. A review of the far-reaching usage of low-light nighttime data. Remote Sens. 15, 623 (2023).
Hao, Q. et al. Exploring the construction of urban artificial light ecology: a systematic review and the future prospects of light pollution. Environ. Sci. Pollut. Res. 30, 1–26 (2023).
Ministry of the Environment of the Czech Republic. Light pollution reduction measures in Europe (2022).
Widmer, K., Beloconi, A., Marnane, I. & Vounatsou, P. Review and assessment of available information on light pollution in Europe (Eionet Report – ETC HE 2022/8) (European Environment Agency, 2022).
Barentine, J. C., Walczak, K., Gyuk, G., Tarr, C. & Longcore, T. A case for a new satellite mission for remote sensing of night lights. Remote Sens. 13, 2294 (2021).
Hölker, F. et al. The dark side of light: a transdisciplinary research agenda for light pollution policy. Ecol. Soc. 15, 13 (2010).
Zielinska-Dabkowska, K. M., Schernhammer, E. S., Hanifin, J. P. & Brainard, G. C. Reducing nighttime light exposure in the urban environment to benefit human health and society. Science 380, 1130–1135 (2023).
Kyba, C. C. M., Öner Altıntaş, Y., Walker, C. E. & Newhouse, M. Citizen scientists report global rapid reductions in the visibility of stars from 2011 to 2022. Science 379, 265–268 (2023).
Linares, H. et al. Assessing light pollution in vast areas: zenith sky brightness maps of Catalonia. J. Quant. Spectrosc. Radiat. Transf. 309, 108678 (2023).
Aubé, M., Simoneau, A. & Kollàth, Z. HABLAN: multispectral and multiangular remote sensing of artificial light at night from high altitude balloons. J. Quant. Spectrosc. Radiat. Transf. 306, 108606 (2023).
Linares, H. et al. Night sky brightness simulation over Montsec protected area. J. Quant. Spectrosc. Radiat. Transf. 249, 106990 (2020).
Abelson, E. et al. Ecological aspects and measurement of anthropogenic light at night. SSRN Electron. J. https://doi.org/10.2139/ssrn.4353905 (2023).
Treanor, P. J. A simple propagation law for artificial night-sky illumination. Observatory 93, 117–120 (1973).
Berry, R. L. Light pollution in southern Ontario. J. R. Astron. Soc. Can. 70, 97 (1976).
Walker, M. F. The effects of urban lighting on the brightness of the night sky. Publ. Astron. Soc. Pac. 89, 405 (1977).
Garstang, R. H. Model for artificial night-sky illumination. Publ. Astron. Soc. Pac. 98, 364 (1986).
Aubé, M. & Simoneau, A. New features to the night sky radiance model Illumina: hyperspectral support, improved obstacles and cloud reflection. J. Quant. Spectrosc. Radiat. Transf. 211, 25–34 (2018).
Kocifaj, M. Multiple scattering contribution to the diffuse light of a night sky: a model which embraces all orders of scattering. J. Quant. Spectrosc. Radiat. Transf. 206, 260–272 (2018).
Jechow, A. et al. Design and implementation of an illumination system to mimic skyglow at ecosystem level in a large-scale lake enclosure facility. Sci. Rep. 11, 23478 (2021).
Linares, H. et al. Modelling the night sky brightness and light pollution sources of Montsec protected area. J. Quant. Spectrosc. Radiat. Transf. 217, 178–188 (2018).
Aubé, M. & Kocifaj, M. Using two light-pollution models to investigate artificial sky radiances at Canary Islands observatories. Mon. Not. R. Astron. Soc. 422, 819–830 (2012).
Walczak, K. et al. The GONet (ground observing network) camera: an inexpensive light pollution monitoring system. Int. J. Sustain. Light. 23, 7–19 (2021).
Jechow, A., Kyba, C. & Hölker, F. Beyond all-sky: assessing ecological light pollution using multi-spectral full-sphere fisheye lens imaging. J. Imaging 5, 46 (2019).
Nievas, M. & Zamorano, J. Absolute photometry and night sky brightness with all-sky cameras. MSc thesis, Univ. Complutense de Madrid (2013).
Kolláth, Z. Measuring and modelling light pollution at the Zselic Starry Sky Park. J. Phys. Conf. Ser. 218, 012001 (2010).
Bertolo, A., Binotto, R., Ortolani, S. & Sapienza, S. Measurements of night sky brightness in the Veneto region of Italy: sky quality meter network results and differential photometry by digital single lens reflex. J. Imaging 5, 56 (2019).
Celino, I., Calegari, G. R., Scrocca, M., Zamorano, J. & Guardia, E. G. Participant motivation to engage in a citizen science campaign: the case of the TESS network. J. Sci. Commun. 20, A03 (2021).
Tilve, V. et al. Estimating all-sky night brightness maps from finite sets of SQM measurements. Highlights Span. Astrophys. VIII 1, 874–874 (2015).
Zamorano, J., Sánchez de Miguel, A., Nievas, M. & Tapia, C. NixNox Procedure to Build Night Sky Brightness Maps from SQM Photometers Observations (Universidad Complutense de Madrid, 2014); https://docta.ucm.es/entities/publication/ab6eb18d-0597-49ee-af6b-2d445c712257.
Marseille, C., Aubé, M., Barreto, Á. & Simoneau, A. Remote sensing of aerosols at night with the CoSQM sky brightness data. Remote Sens. 13, 4623 (2021).
Ribas, S. J. Caracterització de la Contaminació Lumínica en Zones Protegides i Urbanes. PhD thesis, Univ. de Barcelona (2016).
Linares Arroyo, H. Light Pollution Study and Characterization in Catalonia. PhD thesis, Univ. de Barcelona (2021).
Gokus, A. et al. Nachtlichter app: a citizen science tool for documenting outdoor light sources in public spaces. Int. J. Sustain. Light. 25, 24–66 (2023).
Sanchez de Miguel, A., Kyba, C. C. M., Zamorano, J., Gallego, J. & Gaston, K. J. The nature of the diffuse light near cities detected in nighttime satellite imagery. Sci. Rep. 10, 7829 (2020).
Rodríguez, A., Rodríguez, B., Acosta, Y. & Negro, J. J. Tracking flights to investigate seabird mortality induced by artificial lights. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2021.786557 (2022).
Kyba, C. C. M. et al. Artificially lit surface of Earth at night increasing in radiance and extent. Sci. Adv. 3, e1701528 (2017).
Sánchez de Miguel, A. et al. Colour remote sensing of the impact of artificial light at night (I): the potential of the International Space Station and other DSLR-based platforms. Remote Sens. Environ. 224, 92–103 (2019).
Elvidge, C. D. et al. The VIIRS Day/Night Band: a flicker meter in space? Remote Sens. 14, 1316 (2022).
Coesfeld, J. et al. Variation of individual location radiance in VIIRS DNB monthly composite images. Remote Sens. 10, 1964 (2018).
Li, T. et al. Continuous monitoring of nighttime light changes based on daily NASA’s Black Marble product suite. Remote Sens. Environ. 282, 113269 (2022).
Tong, K. P. et al. Angular distribution of upwelling artificial light in Europe as observed by Suomi-NPP satellite. J. Quant. Spectrosc. Radiat. Transf. 249, 107009 (2020).
Kyba, C. et al. Direct measurement of the contribution of street lighting to satellite observations of nighttime light emissions from urban areas. Light. Res. Technol. 53, 189–211 (2020).
Sanchez de Miguel, A. et al. Atlas of astronaut photos of Earth at night. Astron. Geophys. 55, 4.36 (2014).
Guo, H. et al. SDGSAT-1: the world’s first scientific satellite for Sustainable Development Goals. Sci. Bull. 68, 34–38 (2022).
Cheng, B. et al. Automated extraction of street lights from JL1-3B nighttime light data and assessment of their solar energy potential. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 13, 675–684 (2020).
Simons, A. L., Yin, X. & Longcore, T. High correlation but high scale-dependent variance between satellite measured night lights and terrestrial exposure. Environ. Res. Commun. 2, 021006 (2020).
Smith, R. A., Gagné, M. & Fraser, K. C. Pre-migration artificial light at night advances the spring migration timing of a trans-hemispheric migratory songbird. Environ. Pollut. 269, 116136 (2021).
Robert, K. A., Lesku, J. A., Partecke, J. & Chambers, B. Artificial light at night desynchronizes strictly seasonal reproduction in a wild mammal. Proc. R. Soc. B Biol. Sci. 282, 20151745 (2015).
Storms, M. et al. The rising moon promotes mate finding in moths. Commun. Biol. 5, 1234567890 (2022).
Luginbuhl, C. B., Boley, P. A. & Davis, D. R. The impact of light source spectral power distribution on sky glow. J. Quant. Spectrosc. Radiat. Transf. 139, 21–26 (2014).
Cox, D., Sánchez de Miguel, A., Bennie, J., Dzurjak, S. & Gaston, K. Majority of artificially lit Earth surface associated with the non-urban population. Sci. Total Environ. 841, 156782 (2022).
Cox, D. T., Sánchez de Miguel, A., Dzurjak, S. A., Bennie, J. & Gaston, K. J. National scale spatial variation in artificial light at night. Remote Sens. 12, 1591 (2020).
Falchi, F. et al. Light pollution in USA and Europe: the good, the bad and the ugly. J. Environ. Manag. 248, 109227 (2019).
Aubé, M., Kocifaj, M., Zamorano, J., Lamphar, H. S. & Sanchez de Miguel, A. The spectral amplification effect of clouds to the night sky radiance in Madrid. J. Quant. Spectrosc. Radiat. Transf. 181, 11–23 (2016).
Jechow, A. et al. Imaging and mapping the impact of clouds on skyglow with all-sky photometry. Sci. Rep. 7, 6741 (2017).
Ribas, S. J., Torra, J., Paricio, S. & Canal-Domingo, R. How clouds are amplifying (or not) the effects of ALAN. Int. J. Sustain. Light. 18, 32–39 (2016).
Jechow, A. & Hölker, F. Snowglow — the amplification of skyglow by snow and clouds can exceed full moon illuminance in suburban areas. J. Imaging 5, 69 (2019).
Kyba, C. C. M., Ruhtz, T., Fischer, J. & Hölker, F. Red is the new black: how the colour of urban skyglow varies with cloud cover. Mon. Not. R. Astron. Soc. 425, 701–708 (2012).
European Commission, Joint Research Centre, Zissis G., Bertoldi, P., Serrenho, T. Update on the status of LED-lighting world market since 2018. https://data.europa.eu/doi/10.2760/759859 (Publications Office of the European Union, 2021).
Kuechly, H. U. et al. Aerial survey and spatial analysis of sources of light pollution in Berlin, Germany. Remote Sens. Environ. 126, 39–50 (2012).
Barà, S. et al. Estimating the relative contribution of streetlights, vehicles, and residential lighting to the urban night sky brightness. Light. Res. Technol. 51, 1092–1107 (2018).
Luginbuhl, C. B. et al. From the ground up II: sky glow and near-ground artificial light propagation in Flagstaff, Arizona. Publ. Astron. Soc. Pac. 121, 204–212 (2009).
Elvidge, C. D. et al. A fifteen year record of global natural gas flaring derived from satellite data. Energies 2, 595–622 (2009).
Boslett, A., Hill, E., Ma, L. & Zhang, L. Rural light pollution from shale gas development and associated sleep and subjective well-being. Resour. Energy Econ. 64, 101220 (2021).
Barentine, J. C. What does lettuce have to do with my night sky? DarkSky International https://www.darksky.org/greenhouse-light-pollution/ (2020).
Walczak, K. A land of perpetual false dawn. DarkSky International https://www.darksky.org/light-pollution-industrial-greenhouses/ (2021).
Guetté, A., Godet, L., Juigner, M. & Robin, M. Worldwide increase in artificial light at night around protected areas and within biodiversity hotspots. Biol. Conserv. 223, 97–103 (2018).
Koen, E. L., Minnaar, C., Roever, C. L. & Boyles, J. G. Emerging threat of the 21st century lightscape to global biodiversity. Glob. Change Biol. 24, 2315–2324 (2018).
Garrett, J. K., Donald, P. F. & Gaston, K. J. Skyglow extends into the world’s key biodiversity areas. Anim. Conserv. 23, 153–159 (2019).
Hölker, F., Jechow, A., Schroer, S., Tockner, K. & Gessner, M. O. Light pollution of freshwater ecosystems: principles, ecological impacts and remedies. Philos. Trans. R. Soc. B Biol. Sci. 378, 20220360 (2023).
Davies, T. W., Duffy, J. P., Bennie, J. & Gaston, K. J. The nature, extent, and ecological implications of marine light pollution. Front. Ecol. Environ. 12, 347–355 (2014).
Rousseau, Y., Watson, R. A., Blanchard, J. L. & Fulton, E. A. Evolution of global marine fishing fleets and the response of fished resources. Proc. Natl Acad. Sci. USA 116, 12238–12243 (2019).
UNCTAD. Handbook of Statistics 2020, United Nations Conference on Trade and Development (UN, 2020).
Mgana, H. et al. Adoption and consequences of new light-fishing technology (LEDs) on Lake Tanganyika, East Africa. PLoS ONE 14, e0216580 (2019).
Nguyen, K. Q. & Winger, P. D. Artificial light in commercial industrialized fishing applications: a review. Rev. Fish. Sci. Aquac. 27, 106–126 (2018).
Elvidge, C. D. et al. Rating the effectiveness of fishery closures with visible infrared imaging radiometer suite boat detection data. Front. Mar. Sci. 5, 132 (2018).
Dobler, G. et al. Dynamics of the urban lightscape. Inf. Syst. 54, 115–126 (2015).
Robles, J. et al. Evolution of brightness and color of the night sky in Madrid. Remote Sens. 13, 1511 (2021).
Romàn, M. O. & Stokes, E. C. Holidays in lights: tracking cultural patterns in demand for energy services. Earth’s Future 3, 182–205 (2015).
Stathakis, D. & Baltas, P. Seasonal population estimates based on night-time lights. Comput. Environ. Urban Syst. 68, 133–141 (2018).
Zhang, C., Pei, Y., Li, J., Qin, Q. & Yue, J. Application of Luojia 1-01 nighttime images for detecting the light changes for the 2019 spring festival in western cities, China. Remote Sens. 12, 1416 (2020).
Molthan, A. & Jedlovec, G. Satellite observations monitor outages from superstorm Sandy. Eos Trans. Am. Geophys. Union 94, 53–54 (2013).
Romàn, M. O. et al. Satellite-based assessment of electricity restoration efforts in Puerto Rico after hurricane Maria. PLoS ONE 14, e0218883 (2019).
Kocifaj, M. Towards a comprehensive city emission function (CCEF). J. Quant. Spectrosc. Radiat. Transf. 205, 253–266 (2018).
Levin, N. & Zhang, Q. A global analysis of factors controlling VIIRS nighttime light levels from densely populated areas. Remote Sens. Environ. 190, 366–382 (2017).
Kocifaj, M. & Barà, S. Night-time monitoring of the aerosol content of the lower atmosphere by differential photometry of the anthropogenic skyglow. Mon. Not. R. Astron. Soc. Lett. 500, L47–L51 (2020).
Posch, T., Binder, F. & Puschnig, J. Systematic measurements of the night sky brightness at 26 locations in Eastern Austria. J. Quant. Spectrosc. Radiat. Transf. 211, 144–165 (2018).
Pritchard, S. B. The trouble with darkness: NASA’s Suomi satellite images of Earth at night. Environ. Hist. 22, 312–330 (2017).
Barà, S., Bao-Varela, C. & Kocifaj, M. Modeling the artificial night sky brightness at short distances from streetlights. J. Quant. Spectrosc. Radiat. Transf. 296, 108456 (2023).
Barà, S. & Bao-Varela, C. Skyglow inside your eyes: intraocular scattering and artificial brightness of the night sky. Int. J. Sustain. Light. 25, 1–9 (2023).
Sánchez de Miguel, A., Bennie, J., Rosenfeld, E., Dzurjak, S. & Gaston, K. J. Environmental risks from artificial nighttime lighting widespread and increasing across Europe. Sci. Adv. 8, eabl6891 (2022).
Sánchez de Miguel, A. et al. Sky quality meter measurements in a colour-changing world. Mon. Not. R. Astron. Soc. 467, 2966–2979 (2017).
Kinney, J. A. S. Comparison of scotopic, mesopic, and photopic spectral sensitivity curves. J. Opt. Soc. Am. 48, 185–190 (1958).
Rea, M., Bullough, J., Freyssinier-Nova, J. & Bierman, A. A proposed unified system of photometry. Light. Res. Technol. 36, 85–109 (2004).
Crumey, A. Human contrast threshold and astronomical visibility. Mon. Not. R. Astron. Soc. 442, 2600–2619 (2014).
Kollàth, Z., Dömény, A., Kollàth, K. & Nagy, B. Qualifying lighting remodelling in a Hungarian city based on light pollution effects. J. Quant. Spectrosc. Radiat. Transf. 181, 46–51 (2016).
Hung, L.-W., Anderson, S. J., Pipkin, A. & Fristrup, K. Changes in night sky brightness after a countywide LED retrofit. J. Environ. Manag. 292, 112776 (2021).
Longcore, T. et al. Rapid assessment of lamp spectrum to quantify ecological effects of light at night. J. Exp. Zool. A Ecol. Integr. Physiol. 329, 511–521 (2018).
McCallum, I. et al. Estimating global economic well-being with unlit settlements. Nat. Commun. 13, 2459 (2022).
Barentine, J. C. et al. Skyglow changes over Tucson, Arizona, resulting from a municipal LED street lighting conversion. J. Quant. Spectrosc. Radiat. Transf. 212, 10–23 (2018).
Aubé, M. & Roby, J. Sky brightness levels before and after the creation of the first International Dark Sky Reserve, Mont-Mégantic Observatory, Québec, Canada. J. Quant. Spectrosc. Radiat. Transf. 139, 52–63 (2014).
Kyba, C. C. M., Hänel, A. & Hölker, F. Redefining efficiency for outdoor lighting. Energy Environ. Sci. 7, 1806–1809 (2014).
Fouquet, R. & Pearson, P. Seven centuries of energy services: the price and use of light in the United Kingdom (1300-2000). Energy J. 27, 138–178 (2006).
Tsao, J. Y., Saunders, H. D., Creighton, J. R., Coltrin, M. E. & Simmons, J. A. Solid-state lighting: an energy-economics perspective. J. Phys. D Appl. Phys. 43, 354001 (2010).
Bachanek, K. H., Tundys, B., Wiśniewski, T., Puzio, E. & Maroušková, A. Intelligent street lighting in a smart city concepts — a direction to energy saving in cities: an overview and case study. Energies 14, 3018 (2021).
Kyba, C. C. M., Mohar, A., Pintar, G. & Stare, J. Reducing the environmental footprint of church lighting: matching facade shape and lowering luminance with the EcoSky LED. Int. J. Sustain. Light. 20, 1 (2018).
Schroer, S. & Hölker, F. in Handbook of Advanced Lighting Technology 1–17 (Springer, 2014).
Schulte-Römer, N., Meier, J., Söding, M. & Dannemann, E. The LED paradox: how light pollution challenges experts to reconsider sustainable lighting. Sustainability 11, 6160 (2019).
Zielińska-Dabkowska, K. M., Xavia, K. & Bobkowska, K. Assessment of citizens’ actions against light pollution with guidelines for future initiatives. Sustainability 12, 4997 (2020).
Ngarambe, J., Lim, H. S. & Kim, G. Light pollution: is there an environmental Kuznets curve? Sustain. Cities Soc. 42, 337–343 (2018).
Barà, S., Falchi, F., Lima, R. C. & Pawley, M. Can we illuminate our cities and (still) see the stars? Int. J. Sustain. Light. 23, 58–69 (2021).
Dobler, G., Ghandehari, M., Koonin, S. & Sharma, M. A hyperspectral survey of New York City lighting technology. Sensors 16, 2047 (2016).
Zschorn, M. & Mattern, J. Counting lights for sustainability — insights from the citizen science project Nachtlicht-BüHNE. In Proc. Austrian Citizen Science Conference 2022 – PoS(ACSC2022) (Sissa Medialab, 2023).
Muñoz-Gil, G., Dauphin, A., Beduini, F. A. & Sánchez de Miguel, A. Citizen science to assess light pollution with mobile phones. Remote Sens. 14, 4976 (2022).
Riegel, K. W. Light pollution. Science 179, 1285–1291 (1973).
Walker, M. F. The California site survey. Publ. Astron. Soc. Pac. 82, 672 (1970).
Walker, M. F. Light pollution in California and Arizona. Publ. Astron. Soc. Pac. 85, 508 (1973).
Kyba, C. C. M., Ruhtz, T., Fischer, J. & Hölker, F. Cloud coverage acts as an amplifier for ecological light pollution in urban ecosystems. PLoS ONE 6, e17307 (2011).
Stark, H. et al. City lights and urban air. Nat. Geosci. 4, 730–731 (2011).
Kylling, A. et al. Actinic flux determination from measurements of irradiance. J. Geophys. Res. Atmos. 108, 4506 (2003).
Madronich, S. Photodissociation in the atmosphere: 1. Actinic flux and the effects of ground reflections and clouds. J. Geophys. Res. Atmos. 92, 9740–9752 (1987).
Degen, T., Kollàth, Z. & Degen, J. X, Y, and Z: a bird’s eye view on light pollution. Ecol. Evol. 12, e9608 (2022).
Hölker, F. et al. 11 pressing research questions on how light pollution affects biodiversity. Front. Ecol. Evol. 9, 767177 (2021).
Grubisic, M. et al. Light pollution, circadian photoreception, and melatonin in vertebrate. Sustainability 11, 6400 (2019).
Liu, J. A., Meléndez-Fernàndez, O. H., Bumgarner, J. R. & Nelson, R. J. Effects of light pollution on photoperiod-driven seasonality. Horm. Behav. 141, 105150 (2022).
Lin, C.-H., Takahashi, S., Mulla, A. J. & Nozawa, Y. Moonrise timing is key for synchronized spawning in coral Dipsastraea speciosa. Proc. Natl Acad. Sci. USA 118, e2101985118 (2021).
Gaston, K., Visser, M. & Hölker, F. The biological impacts of artificial light at night: the research challenge. Philos. Trans. R. Soc. B Biol. Sci. 370, 20140133 (2015).
Walbeek, T. J., Harrison, E. M., Gorman, M. R. & Glickman, G. L. Naturalistic intensities of light at night: a review of the potent effects of very dim light on circadian responses and considerations for translational research. Front. Neurol. 12, 625334 (2021).
Gaston, K. J., Davies, T. W., Nedelec, S. L. & Holt, L. A. Impacts of artificial light at night on biological timings. Annu. Rev. Ecol. Evol. Syst. 48, 49–68 (2017).
Silva, A. D., Valcu, M. & Kempenaers, B. Light pollution alters the phenology of dawn and dusk singing in common European songbirds. Philos. Trans. R. Soc. B Biol. Sci. 370, 20140126 (2015).
Dominoni, D. M., Jensen, J. K., Jong, M., Visser, M. E. & Spoelstra, K. Artificial light at night, in interaction with spring temperature, modulates timing of reproduction in a passerine bird. Ecol. Appl. 30, e02062 (2020).
Meng, L. et al. Artificial light at night: an underappreciated effect on phenology of deciduous woody plants. PNAS Nexus 1, pgac046 (2022).
Zheng, Q., Teo, H. C. & Koh, L. P. Artificial light at night advances spring phenology in the United States. Remote Sens. 13, 399 (2021).
Bennie, J., Davies, T. W., Cruse, D. & Gaston, K. J. Ecological effects of artificial light at night on wild plants. J. Ecol. 104, 611–620 (2016).
Evens, R. et al. Skyglow relieves a crepuscular bird from visual constraints on being active. Sci. Total Environ. 900, 165760 (2023).
Kupprat, F., Hölker, F. & Kloas, W. Can skyglow reduce nocturnal melatonin concentrations in Eurasian perch? Environ. Pollut. 262, 114324 (2020).
Foster, J. J. et al. Light pollution forces a change in dung beetle orientation behavior. Curr. Biol. 31, 3935–3942.e3 (2021).
Berge, J. et al. Artificial light during the polar night disrupts arctic fish and zooplankton behaviour down to 200m depth. Commun. Biol. 3, 102 (2020).
Dimitriadis, C., Fournari – Konstantinidou, I., Sourbès, L., Koutsoubas, D. & Mazaris, A. D. Reduction of sea turtle population recruitment caused by nightlight: evidence from the Mediterranean region. Ocean Coast. Manage. 153, 108–115 (2018).
Weisshaupt, N., Leskinen, M., Moisseev, D. N. & Koistinen, J. Anthropogenic illumination as guiding light for nocturnal bird migrants identified by remote sensing. Remote Sens. 14, 1616 (2022).
Hale, J. D., Fairbrass, A. J., Matthews, T. J., Davies, G. & Sadler, J. P. The ecological impact of city lighting scenarios: exploring gap crossing thresholds for urban bats. Glob. Change Biol. 21, 2467–2478 (2015).
Korpach, A. M. et al. Urbanization and artificial light at night reduce the functional connectivity of migratory aerial habitat. Ecography 8, e05581 (2022).
Ditmer, M. A., Stoner, D. C. & Carter, N. H. Estimating the loss and fragmentation of dark environments in mammal ranges from light pollution. Biol. Conserv. 257, 109135 (2021).
Pérez Vega, C., Jechow, A., Campbell, J. A., Zielinska-Dabkowska, K. M. & Hölker, F. Light pollution from illuminated bridges as a potential barrier for migrating fish — linking measurements with a proposal for a conceptual model. Basic Appl. Ecol. 74, 1–12 (2024).
Szaz, D. et al. Lamp-lit bridges as dual light-traps for the night-swarming mayfly, Ephoron virgo: interaction of polarized and unpolarized light pollution. PLoS ONE 10, e0121194 (2015).
Stepanian, P. M. et al. Declines in an abundant aquatic insect, the burrowing mayfly, across major North American waterways. Proc. Natl Acad. Sci. USA 117, 2987–2992 (2020).
Manfrin, A. et al. Artificial light at night affects organism flux across ecosystem boundaries and drives community structure in the recipient ecosystem. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2017.00061 (2017).
McLaren, J. D. et al. Artificial light at night confounds broad-scale habitat use by migrating birds. Ecol. Lett. 21, 356–364 (2018).
Hölker, F. et al. Microbial diversity and community respiration in freshwater sediments influenced by artificial light at night. Philos. Trans. R. Soc. B Biol. Sci. 370, 20140130 (2015).
Sanders, D. & Gaston, K. J. How ecological communities respond to artificial light at night. J. Exp. Zool. A Ecol. Integr. Physiol. 329, 394–400 (2018).
Poulin, R. Light pollution may alter host–parasite interactions in aquatic ecosystems. Trends Parasitol. 39, 1050–1059 (2023).
Nelson, T. R. et al. Riverine fish density, predator-prey interactions, and their relationships with artificial light at night. Ecosphere 13, e4261 (2022).
Giavi, S., Fontaine, C. & Knop, E. Impact of artificial light at night on diurnal plant-pollinator interactions. Nat. Commun. 12, 1690 (2021).
Hölker, F., Wolter, C., Perkin, E. & Tockner, K. Light pollution as a biodiversity threat. Trends Ecol. Evol. 25, 681-2 (2010).
Lewanzik, D. & Voigt, C. C. Artificial light puts ecosystem services of frugivorous bats at risk. J. Appl. Ecol. 51, 388–394 (2014).
Agboola, O. et al. A review on the impact of mining operation: monitoring, assessment and management. Results Eng. 8, 100181 (2020).
Dale, A. T. et al. Preliminary comparative life-cycle impacts of streetlight technology. J. Infrastruct. Syst. 17, 193–199 (2011).
Tähkämö, L., Räsänen, R.-S. & Halonen, L. Life cycle cost comparison of high-pressure sodium and light-emitting diode luminaires in street lighting. Int. J. Life Cycle Assess. 21, 137–145 (2015).
Rahman, S. M., Pompidou, S., Alix, T. & Laratte, B. A review of LED lamp recycling process from the 10 R strategy perspective. Sustain. Prod. Consum. 28, 1178–1191 (2021).
United Nations. UN Environment Programme: the rapid transition to energy efficient lighting: an integrated policy approach (UN, 2013).
Noon, K. A., De Napoli, K., Swanton, P., Guedes, C. & Hamacher, D. The Routledge Handbook of Social Studies of Outer Space (Routledge, 2023).
Streetlight-EPC. Streetlight-EPC - Guide. Joint Research Centre — European Energy Efficiency Platform https://e3p.jrc.ec.europa.eu/publications/streetlight-epc-guide (2015).
Cupertino, M. D. C. et al. Light pollution: a systematic review about the impacts of artificial light on human health. Biol. Rhythm Res. 54, 263–275 (2022).
Rybnikova, N. & Portnov, B. A. Population-level study links short-wavelength nighttime illumination with breast cancer incidence in a major metropolitan area. Chronobiol. Int. 35, 1198–1208 (2018).
Stevens, R. G. Testing the light-at-night (LAN) theory for breast cancer causation. Chronobiol. Int. 28, 653–656 (2011).
Garcia-Saenz, A. et al. Association between outdoor light-at-night exposure and colorectal cancer in Spain. Epidemiology 31, 718–727 (2020).
Fonken, L. K. et al. Light at night increases body mass by shifting the time of food intake. Proc. Natl Acad. Sci. USA 107, 18664–18669 (2010).
Spiegel, K., Knutson, K., Leproult, R., Tasali, E. & Cauter, E. V. Sleep loss: a novel risk factor for insulin resistance and type 2 diabetes. J. Appl. Physiol. 99, 2008–2019 (2005).
Bedrosian, T. A., Fonken, L. K., Walton, J. C., Haim, A. & Nelson, R. J. Dim light at night provokes depression-like behaviors and reduces CA1 dendritic spine density in female hamsters. Psychoneuroendocrinology 36, 1062–1069 (2011).
McIsaac, M. A., Sanders, E., Kuester, T., Aronson, K. J. & Kyba, C. C. M. The impact of image resolution on power, bias, and confounding. Environ. Epidemiol. 5, e145 (2021).
Nadybal, S. M., Collins, T. W. & Grineski, S. E. Light pollution inequities in the continental United States: a distributive environmental justice analysis. Environ. Res. 189, 109959 (2020).
Xiao, Q. et al. Cross-sectional association between outdoor artificial light at night and sleep duration in middle-to-older aged adults: the NIH-AARP Diet and Health Study. Environ. Res. 180, 108823 (2020).
Park, Y.-M. M., White, A. J., Jackson, C. L., Weinberg, C. R. & Sandler, D. P. Association of exposure to artificial light at night while sleeping with risk of obesity in women. JAMA Intern. Med. 179, 1061 (2019).
Mendoza, R. U. Why do the poor pay more? Exploring the poverty penalty concept. J. Int. Dev. 23, 1–28 (2011).
Braubach, M. & Fairburn, J. Social inequities in environmental risks associated with housing and residential location — a review of evidence. Eur. J. Public Health 20, 36–42 (2010).
Mullin, K., Mitchell, G., Nawaz, N. R. & Waters, R. D. Natural capital and the poor in England: towards an environmental justice analysis of ecosystem services in a high income country. Landsc. Urban Plan. 176, 10–21 (2018).
Elvidge, C. D., Baugh, K. E., Kihn, E. A., Kroehl, H. W. & Davis, E. R. Mapping city lights with nighttime data from the DMSP Operational Linescan System. Photogramm. Eng. Remote Sens. 63, 727–734 (1997).
Forbes, D. J. Multi-scale analysis of the relationship between economic statistics and DMSP-OLS night light images. GISci. Remote Sens. 50, 483–499 (2013).
Kyba, C. et al. High-resolution imagery of Earth at night: new sources, opportunities and challenges. Remote Sens. 7, 1–23 (2014).
Bouman, M. J. Luxury and control. J. Urban Hist. 14, 7–37 (1987).
Xiao, Q. et al. Artificial light at night and social vulnerability: an environmental justice analysis in the U.S. 2012-2019. Environ. Int. 178, 108096 (2023).
Martinez, L. & Bordonaro, E. Lighting inequality in an urban context: design approach and case studies. IOP Conf. Ser. Earth Environ. Sci. 1099, 012006 (2022).
Mann, M., Melaas, E. & Malik, A. Using VIIRS Day/Night Band to measure electricity supply reliability: preliminary results from Maharashtra, India. Remote Sens. 8, 711 (2016).
Zhou, Y., Li, X., Asrar, G. R., Smith, S. J. & Imhoff, M. A global record of annual urban dynamics (1992–2013) from nighttime lights. Remote Sens. Environ. 219, 206–220 (2018).
Zhu, Z. et al. Understanding an urbanizing planet: strategic directions for remote sensing. Remote Sens. Environ. 228, 164–182 (2019).
Vilaysouk, X. et al. Estimating the total in-use stock of Laos using dynamic material flow analysis and nighttime light. Resour. Conserv. Recycl. 170, 105608 (2021).
Henderson, J. V., Storeygard, A. & Weil, D. N. Measuring economic growth from outer space. Am. Econ. Rev. 102, 994–1028 (2012).
Statista. Gross domestic product (GDP) at current prices of Wuhan City in China from 2012 to 2022. Statista https://www.statista.com/statistics/1374056/china-gross-domestic-product-gdp-of-wuhan/ (2023).
Duan, H., Cao, Z., Shen, M., Liu, D. & Xiao, Q. Detection of illicit sand mining and the associated environmental effects in China’s fourth largest freshwater lake using daytime and nighttime satellite images. Sci. Total Environ. 647, 606–618 (2019).
Elvidge, C., Zhizhin, M., Baugh, K. & Hsu, F.-C. Automatic boat identification system for VIIRS low light imaging data. Remote Sens. 7, 3020–3036 (2015).
Geliot, S., Coesfeld, J. & Kyba, C. C. M. Scale and impact of sports stadium grow lighting systems in England. Int. J. Sustain. Light. 24, 39–51 (2022).
Daniel, J., Secor, W. & Campbell, B. Impact of information on attitudes regarding greenhouse lighting externality regulation. J. Agric. Appl. Econ. 55, 358–375 (2023).
Li, X., Liu, S., Jendryke, M., Li, D. & Wu, C. Night-time light dynamics during the Iraqi civil war. Remote Sens. 10, 858 (2018).
Miller, S. et al. Illuminating the capabilities of the Suomi National Polar-Orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band. Remote Sens. 5, 6717–6766 (2013).
Miller, S. D. et al. Honing in on bioluminescent milky seas from space. Sci. Rep. 11, 15443 (2021).
Zhou, L. et al. Observed atmospheric features for the 2022 Hunga Tonga volcanic eruption from Joint Polar Satellite System science data products. Atmosphere 14, 263 (2023).
Ranzoni, J., Giuliani, G., Huber, L. & Ray, N. Modelling the nocturnal ecological continuum of the State of Geneva, Switzerland, based on high-resolution nighttime imagery. Remote Sens. Appl. Soc. Environ. 16, 100268 (2019).
Elvidge, C. D. et al. The Nightsat mission concept. Int. J. Remote Sens. 28, 2645–2670 (2007).
Falchi, F., Barà, S., Cinzano, P., Lima, R. C. & Pawley, M. A call for scientists to halt the spoiling of the night sky with artificial light and satellites. Nat. Astron. 7, 237–239 (2023).
Vruno, F. D. et al. Unintended electromagnetic radiation from Starlink satellites detected with LOFAR between 110 and 188 MHz. Astron. Astrophys. 676, A75 (2023).
Cui, Z. & Xu, Y. Impact simulation of Starlink satellites on astronomical observation using Worldwide Telescope. Astron. Comput. 41, 100652 (2022).
Kocifaj, M., Kundracik, F., Barentine, J. C. & Barà, S. The proliferation of space objects is a rapidly increasing source of artificial night sky brightness. Mon. Not. R. Astron. Soc. Lett. 504, L40–L44 (2021).
Lewis, H. G. Understanding long-term orbital debris population dynamics. J. Space Saf. Eng. 7, 164–170 (2020).
Lackner, H. Yemen in Crisis: Road to War (Verso Books, 2019).
Rao, C. & Yan, B. Study on the interactive influence between economic growth and environmental pollution. Environ. Sci. Pollut. Res. 27, 39442–39465 (2020).
Acknowledgements
A.A., A.S, C.C.M.K., F.H., H.L.A., M.A., M.K. and T.D. received funding for this work through ESA’s New Earth Observation Mission Ideas (NEOMI) program under contract 4000139244/22/NL. A.S.d.M. has been funded by European Union’s Horizon 2020 research and innovation programme under Marie Skłodowska-Curie grant agreement number 847635 (UNA4CAREER). A.J. was supported by the project BELLVUE “Beleuchtungsplanung: Verfahren und Methoden für eine naturschutzfreundliche Beleuchtungsgestaltung” by the BfN with funds from the BMU (FKZ: 3521 84 1000).
Author information
Authors and Affiliations
Contributions
H.L.A, A.A., T.D., F.H., A.J., M.K., A.S.d.M., K.W. and C.C.M.K. researched data for the article. H.L.A., A.A., M.A., T.D., B.R.E., G.G., F.H., M.K., A.S., K.W. and C.C.M.K contributed substantially to the discussion of the content. H.L.A., A.A., T.D., F.H., A.J., M.K., A.S.d.M., K.W. and C.C.M.K. wrote the article. H.L.A., A.A., A.S. and C.C.M.K. reviewed and/or edited the manuscript before submission.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Earth & Environment thanks Qingling Zhang, Avalon Owens and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Related links
Dark Sky International: https://www.darksky.org
ImageJ: http://imagej.nih.gov/ij/
IRIS: http://www.astrosurf.com/buil/us/iris/iris.htm
The World Factbook: https://www.cia.gov/the-world-factbook/field/airports/country-comparison/
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Linares Arroyo, H., Abascal, A., Degen, T. et al. Monitoring, trends and impacts of light pollution. Nat Rev Earth Environ 5, 417–430 (2024). https://doi.org/10.1038/s43017-024-00555-9
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s43017-024-00555-9
This article is cited by
-
Artificial light at night reduces emergence and attracts flying adults of aquatic Diptera
Aquatic Sciences (2025)
-
Sustainable Development Goals relighted: light pollution management as a novel lens to SDG achievement
Discover Sustainability (2025)