Academia.eduAcademia.edu
EDITORES: JOSEP M. MATA–PERELLÓ MARK A. HUNT ORTIZ ENRIQUE ORCHE GARCÍA EDICIÓN A CARGO DE LA SEDPGYM Y DEL EXCMO. AYUNTAMIENTO DE LOGROSÁN PATRIMONIO GEOLÓGICO Y MINERO: DE LA INVESTIGACIÓN A LA DIFUSIÓN ACTAS DEL XV CONGRESO INTERNACIONAL SOBRE PATRIMONIO GEOLÓGICO Y MINERO XIX SESIÓN CIENTÍFICA DE LA SEDPGYM Congreso en memoria de Vicente Sos Baynat y Craig Merideth LOGROSÁN (CÁCERES, ESPAÑA) 2015 XV CONGRESO INTERNACIONAL SOBRE PATRIMONIO GEOLÓGICO Y MINERO. XIX SESIÓN CIENTÍFICA DE SEDPGYM. LOGROSÁN, 2014. ISBN 978 – 84 – 693 – 1675 – 7. Pp. i-xvi. Foto portada: Castillete de mamposteria del Pozo Calle. Minas de Logrosán. Fotografia de Paqui Piñas ii XV CONGRESO INTERNACIONAL SOBRE PATRIMONIO GEOLÓGICO Y MINERO. XIX SESIÓN CIENTÍFICA DE SEDPGYM. LOGROSÁN, 2014. ISBN 978 – 84 – 693 – 1675 – 7. Pp. i-xvi. PATRIMONIO GEOLÓGICO Y MINERO: DE LA INVESTIGACIÓN A LA DIFUSIÓN ACTAS DEL XV CONGRESO INTERNACIONAL SOBRE PATRIMONIO GEOLÓGICO Y MINERO XIX SESIÓN CIENTÍFICA DE LA SEDPGYM Congreso en memoria de Vicente Sos Baynat y Craig Merideth LOGROSÁN (CÁCERES, ESPAÑA) 25 – 28 DE SEPTIEMBRE DE 2014 Organizadores SOCIEDAD ESPAÑOLA PARA LA DEFENSA DEL PATRIMONIO GEOLÓGICO Y MINERO EXCMO. AYUNTAMIENTO DE LOGROSÁN Entidades colaboradoras GOBIERNO DE EXTREMADURA DIPUTACIÓN DE CÁCERES GEOPARQUE VILLUERCAS-IBORES-JARA ASOCIACIÓN GEOLÓGICA DE EXTREMADURA INSTITUTO GEOLÓGICO Y MINERO DE ESPAÑA RED ELÉCTRICA DE ESPAÑA UNIVERSIDAD DE EXTREMADURA SENDERO INTERNACIONAL DE LOS APALACHES APRODERVI TECMINSA, S.L. EGEOMAPPING, S.L. ARQUEOPRO, ESTUDIO DE ARQUEOLOGÍA Y PATRIMONIO HISTÓRICO Editores Josep María Mata-Perelló, Mark A. Hunt Ortiz, Enrique Orche García Logrosán 2015 iii XV CONGRESO INTERNACIONAL SOBRE PATRIMONIO GEOLÓGICO Y MINERO. XIX SESIÓN CIENTÍFICA DE SEDPGYM. LOGROSÁN, 2014. ISBN 978 – 84 – 693 – 1675 – 7. Pp. i-xvi. Editores: Josep María Mata-Perelló, Mark A. Hunt Ortiz y Enrique Orche García Patrimonio geológico y minero: de la investigación a la difusión. Actas del XV Congreso Internacional sobre Patrimonio geológico y minero. XIX Sesión científica de SEDPGYM. Logrosán (Cáceres). 2015 Número de páginas: 810. ISBN 978-84-693-1675-7 © Autores y editores Editores: Josep María Mata-Perelló (1), Mark A. Hunt Ortiz (2), Enrique Orche García (3). (1) Universidad Politécnica de Madrid, Departamento de Ingeniería Geológica. C/Ríos Rosas 21, 28003 Madrid. (2) Arqueopro, Estudio de Arqueología y Patrimonio Histórico y Grupo de Investigación HUM-694, Universidad de Sevilla, Departamento de Prehistoria y Arqueología. C/ María de Padilla s/n, 41004 Sevilla. (3) SEDPGYM. C/ Valencia 7, 36203 Vigo. Los trabajos que a continuación se exponen, han sido enviados a la organización del XV CONGRESO INTERNACIONAL SOBRE PATRIMONIO GEOLÓGICO Y MINERO. XIX SESIÓN CIENTÍFICA DE LA SEDPGYM. Corresponden a los originales entregados por los autores, de cuyo texto, contenido y opiniones son responsables. Las únicas modificaciones que se han realizado han sido de ajuste de formato de aquellos artículos que no han respetado las normas de edición. iv XV CONGRESO INTERNACIONAL SOBRE PATRIMONIO GEOLÓGICO Y MINERO. XIX SESIÓN CIENTÍFICA DE SEDPGYM. LOGROSÁN, 2014. ISBN 978 – 84 – 693 – 1675 – 7. Pp. i-xvi. I. NOTA DE LOS EDITORES Este volumen recoge los artículos presentados como ponencias, comunicaciones y posters en el XV CONGRESO INTERNACIONAL SOBRE PATRIMONIO GEOLÓGICO Y MINERO. XIX SESIÓN CIENTÍFICA DE LA SOCIEDAD ESPAÑOLA PARA LA DEFENSA DEL PATRIMONIO GEOLÓGICO Y MINERO (SEDPGYM), celebrado durante los días 25 a 28 de septiembre de 2014 en Logrosán (Cáceres). Además de los objetivos generales que se pretenden conseguir a través de los Congresos Internacionales que la SEDPGYM viene organizando desde 1994 (la promoción del estudio, recuperación, conservación y difusión del Patrimonio Geológico y Minero), en el caso del XV Congreso celebrado en Logrosán se plantearon desde el principio objetivos más específicos: potenciar el conocimiento de ese Patrimonio en el ámbito del Geoparque Villuercas-IboresJara, declarado como tal en 2011, y dar especial relevancia a la investigación y difusión de los Geositios Mina Costanaza (con su Centro de Interpretación y Museo asociados) y Cerro de San Cristóbal, inmediatos a la población de Logrosán. Precisamente la investigación geológica y arqueológica del Cerro de San Cristóbal fue iniciada por los investigadores a cuya memoria estuvo dedicado el Congreso Internacional: los doctores Vicente Sos Baynat y Craig Merideth. Con esa intención, a través de la invitación a grupos de investigación de distintas universidades de España, Portugal, Alemania y Reino Unido, se incidió particularmente en este Congreso en aspectos geológicos y del Patrimonio minero-metalúrgico relacionados con la explotación del estaño en la Antigüedad, como queda patente en el contenido de estas Actas. Son obligados numerosos agradecimientos, incluyendo a las Entidades Colaboradoras, a los especialistas que sirvieron de guías en las excursiones pre (Geoparque Villuercas-Ibores-Jara) y post (Mina Costanaza-Cerro de San Cristóbal) congresuales y a las autoridades y responsables políticos (especialmente del Gobierno de Extremadura y del IGME) que apoyaron con su presencia y participación esta reunión científica. La exposición de sus trabajos por parte del numeroso elenco de congresistas internacionales es fundamentalmente lo que ha configurado el éxito del Congreso, que ahora queda plasmado en la publicación de las Actas. Queremos resaltar especialmente la asistencia y las contribuciones realizadas al Congreso por el Dr. Alejandro Sos Paradinas, hijo de D. Vicente, y de Phil Andrews y Brenda Craddock, que fueron miembros del equipo de investigación del Dr. Merideth. Este Congreso no se podría haber llevado a cabo sin la eficaz participación del Excmo. Ayuntamiento de Logrosán, cuya entonces alcaldesa, Dª María Isabel Villa Naharro, puso a nuestra disposición los medios necesarios para asegurar su correcta organización y buen desarrollo, especialmente a través de la colaboración imprescindible de las técnicas municipales Dª Maripaz Dorado y Dª Paqui Piñas. Le agradecemos al actual alcalde, D. Juan Carlos Hernández Martínez, haberse hecho cargo de la publicación de estas Actas, respondiendo así al compromiso institucional adquirido por la anterior corporación. Esperamos que la celebración en Logrosán (Cáceres) del XV Congreso Internacional sobre Patrimonio Geológico y Minero y la publicación en este volumen de sus Actas sirvan, en relación con el subtítulo del Congreso “…de la investigación a la difusión”, para fomentar la investigación de ese Patrimonio y su reversión a la Sociedad y para la concienciación de su importancia científica y cultural y de importante factor para lograr un desarrollo sostenible. Josep M. Mata-Perelló, Mark A. Hunt Ortiz Enrique Orche García Diciembre de 2015 v XV CONGRESO INTERNACIONAL SOBRE PATRIMONIO GEOLÓGICO Y MINERO. XIX SESIÓN CIENTÍFICA DE SEDPGYM. LOGROSÁN, 2014. ISBN 978 – 84 – 693 – 1675 – 7. Pp. i-xvi. vi XV CONGRESO INTERNACIONAL SOBRE PATRIMONIO GEOLÓGICO Y MINERO. XIX SESIÓN CIENTÍFICA DE SEDPGYM. LOGROSÁN, 2014. ISBN 978 – 84 – 693 – 1675 – 7. Pp. i-xvi. II. ÍNDICE DE CONTENIDOS II.1. PONENCIAS TIN ISOTOPES AND THE SOURCES OF TIN IN THE EARLY BRONZE AGE ÚNĚTICE CULTURE B. NESSEL, G. BRÜGMANN, E. PERNICKA ………………………………………........... 1 LA PRIMERA MINERÍA Y METALURGIA DEL ESTAÑO EN LA PENÍNSULA IBÉRICA: APORTACIONES AL ESTADO DE LA CUESTIÓN B. COMENDADOR, E. FIGUEIREDO, J. FONTE, E. MEUNIER ................................... 21 ESTUDIOS Y EXPLOTACIÓN MINERA DEL BATOLITO GRANÍTICO DE LOGROSAN (CÁCERES,.ESPAÑA) POR EL PROFESOR VICENTE SOS BAYNAT A. SOS ……………………..……………………………….……………...……….……... 41 CRAIG MERIDETH, EL CERRO DE SAN CRISTÓBAL (LOGROSÁN, CÁCERES) AND LATE BRONZE AGE TIN P. ANDREWS …………………………………………….……………………………..…. 51 LA EXPLOTACIÓN PROTOHISTÓRICA DEL ESTAÑO EN EL CERRO DE SAN CRISTÓBAL DE LOGROSÁN (CÁCERES) A. RODRÍGUEZ, I. PAVÓN, D. M. DUQUE, M. A. HUNT …………………….….…...... 63 EL YACIMIENTO DE FOSFATO DE LOGROSÁN (CÁCERES, ESPAÑA): MITO, CIENCIA Y PROGRESO E. BOIXEREU ………………………………………………………………….……….…... 87 EL PATRIMONIO GEOLÓGICO - MINERO DEL GEOPARQUE VILLUERCAS-IBORES- JARA (PROVINCIA DE CÁCERES, ESPAÑA) F. J. FERNÁNDEZ-AMO, E. REBOLLADA …….…………………………..……..…… 105 EL GEOPARQUE VILLUERCAS-IBORES-JARA Y SU IMPACTO MÚLTIPLE EN EL ÁREA DE INFLUENCIA J. M. BARRERA ………………………………………………….…….…… …………….129 vii XV CONGRESO INTERNACIONAL SOBRE PATRIMONIO GEOLÓGICO Y MINERO. XIX SESIÓN CIENTÍFICA DE SEDPGYM. LOGROSÁN, 2014. ISBN 978 – 84 – 693 – 1675 – 7. Pp. i-xvi. II.2. COMUNICACIONES II.2.1. PATRIMONIO GEOLÓGICO “ROSMANINHAL, TERRA DO OURO”: ETNOMINEROLOGIA E PATRIMÓNIO GEOLÓGICO: UMA EXPERIÊNCIA MUSEOLÓGICA PARTICIPATIVA NO GEOPARK NATURTEJO, PORTUGAL E. CHAMBINO, C.N. CARVALHO, J. RODRIGUES ....................................................... 145 EL ALABASTRO: SIGNO DE IDENTIDAD DE SARRAL, TARRAGONA P. ALFONSO, M. GARCIA-VALLES,V. TORRAS, J.M. MATA-PERELLÓ………..….. 177 DOCUMENTAL SOBRE EL PATRIMONIO GEOLÓGICO DEL ESTRECHO DE BOLVONEGRO (MORATALLA, MURCIA) F. GUILLÉN, A. DEL RAMO ………………………….…….…………………………... 187 INVENTARIO PRELIMIAR DEL PATRIMONIO GEOLÓGICO DE LA COMARCA DE HUÉSCAR (GRANADA) J.F. ROSILLO, F. GUILLÉN, M.A. ALIAS, A. SÁNCHEZ, L. ARRUFAT, C. DÍAZ ……………………………………………………………..………..…………….. 203 DATOS PARA EL CONOCIMIENTO DEL PATRIMONIO GEOLÓGICO DE LA COMARCA ARAGONESA DEL BAIX CINCA / BAJO CINCA (HUESCA y ZARAGOZA) J. M. MATA-PERELLÓ, J. SANZ, F.CLIMENT, J. VILALTELLA ..………………..… 221 DATOS PARA EL CONOCIMIENTO DEL PATRIMONIO GEOLÓGICO DE LA COMARCA ARAGONESA DE LA JACETÁNIA / CHACETANIA (HUESCA Y ZARAGOZA) J. VILALTELLA, J. S. PUIG, J.M. MATA-PERELLÓ, J. SANZ ……………………..… 229 II.2.2. PATRIMONIO MINERO EL PAISAJE MINERO DEL VAL DE ARIÑO (TERUEL): RECUPERACION SOSTENIBLE FINALIZADA LA ACTIVIDAD EXTRACTIVA A. PIZARRO ….…………………………………………….…………………….……….. 235 EL PATRIMONIO DE LA MINERÍA SUBTERRÁNEA DE CARBÓN DE LA CUENCA DEL GUADIATO V.A. CANO, M.C. GARCÍA, A. MOYANO, M. MUÑOZ, M. RUÍZ ……………….…… 255 LAS MINAS DE MERCURIO DE ALMADENEJOS, UN PATRIMONIO MINERO EN PELIGRO A.HERNÁNDEZ, E. ALMANSA, M. SILVESTRE ………………………………………. 279 viii XV CONGRESO INTERNACIONAL SOBRE PATRIMONIO GEOLÓGICO Y MINERO. XIX SESIÓN CIENTÍFICA DE SEDPGYM. LOGROSÁN, 2014. ISBN 978 – 84 – 693 – 1675 – 7. Pp. i-xvi. EL INVENTARIO DEL PATRIMONIO MINERO TANGIBLE. FICHAS PARA LA CONSULTA DE LOS LIPM (LUGARES DE INTERÉS DEL PATRIMONIO MINERO) J. M. MATA-PERELLÓ, F.CLIMENT, J. VINYES, C. RUBIO ……….…….…………. 289 LA FUENTE DE TRONCOSO, ORIGEN DEL BALNEARIO DE MONDARIZ: UN PATRIMONIO CULTURAL Y MINERO ABANDONADO A SU SUERTE E. ORCHE, M. P. AMARÉ, M. P. ORCHE ……………….………………………….....… 291 PROPUESTA DE EVALUACIÓN INICIAL DE RIESGOS LABORALES EN LOS PARQUES MINEROS Y LAS MINAS MUSEALIZADAS E. ORCHE, M. P. ORCHE ………………………..………….……………………………. 323 LA MINERÍA Y EL PATRIMONIO MINERO EN EL GEOPARC DE LA CATALUNYA CENTRAL F. CLIMENT, J. M. MATA-PERELLÓ, J. VINYES, C. RUBIO …………...…………. 343 RESULTADOS PRELIMINARES DEL INVENTARIO DE ELEMENTOS MINERO-INDUSTRIALES DEL GEOPARQUE PARQUE NATURAL SIERRA NORTE DE SEVILLA (ESPAÑA) M. P. ORCHE, A. GIL, R. PÉREZ DE GUZMÁN ……………………………………... 353 CREACIÓN DE UN NUEVO RECORRIDO GEOTURÍSTICO EN LA ANTIGUA EXPLOTACIÓN MINERA DE CERRO DEL HIERRO, GEOPARQUE-PARQUE NATURAL SIERRA NORTE DE SEVILLA (ESPAÑA) A. GIL, R. PÉREZ DE GUZMÁN, M.P. ORCHE …………...………....…...................… 373 DATOS PARA EL CONOCIMIENTO DEL PATRIMONIO MINERO DE LA COMARCA VALENCIANA DEL ALT MAESTRAT (CASTELLÓN / CASTELLÓ) J. M. MATA-PERELLÓ, V. CARDONA, P. ALFONSO, F.CLIMENT, D. PARCERISAS, F. BRAVO, J. VILALTELLA………………………………………… 391 DATOS PARA EL CONOCIMIENTO DEL PATRIMONIO MINERO DE LA COMARCA VALENCIANA DEL BAIX MAESTRAT (CASTELLÓN / CASTELLÓ) J. VILALTELLA, F. BRAVO, J. M. MATA PERELLÓ, V. CARDONA, P. ALFONSO, F.CLIMENT, D. PARCERISAS …...……………………..............………. 403 DATOS PARA EL CONOCIMIENTO DEL PATRIMONIO MINERO DE LA COMARCA NATURAL VALENCIANA DE LA TINENÇA DE BENIFASSÀ (CASTELLÓN / CASTELLÓ) J. VILALTELLA, F. BRAVO, J. M. MATA-PERELLÓ, V. CARDONA, P. ALFONSO, F.CLIMENT, D. PARCERISAS ……………….………………………… 415 DATOS PARA EL CONOCIMIENTO DEL PATRIMONIO MINERO DE LA COMARCA VALENCIANA DE ELS PORTS (CASTELLÓN / CASTELLÓ) J.S. PUIG, J. VILALTELLA, F. BRAVO, J. M. MATA-PERELLÓ, V. CARDONA, P. ALFONSO, D. PARCERISAS ………………………………….……. 423 ix XV CONGRESO INTERNACIONAL SOBRE PATRIMONIO GEOLÓGICO Y MINERO. XIX SESIÓN CIENTÍFICA DE SEDPGYM. LOGROSÁN, 2014. ISBN 978 – 84 – 693 – 1675 – 7. Pp. i-xvi. DATOS PARA EL CONOCIMIENTO DEL PATRIMONIO MINERO DE LA COMARCA VALENCIANA DEL CAMP DE MORVEDRE (VALÉNCIA / VALÈNCIA) J.S. PUIG, J. VILALTELLA, J. M. MATA-PERELLÓ, V. CARDONA, P. ALFONSO, D. PARCERISAS……………………………..…………………………… 437 DATOS PARA EL CONOCIMIENTO DEL PATRIMONIO MINERO DE LA COMARCA CATALANA DEL PRIORAT (REGIÓN DE REUS - TARRAGONA) J. M. MATA-PERELLÓ, J. SANZ, F. BRAVO, F.CLIMENT, J. VILALTELLA…......… 445 II.2.3. ARQUEOLOGÍA IDENTIFICACIÓN DE ANTIGUAS LABORES MINERAS ROMANAS EN EL NOROESTE PENINSULAR CON TECNOLOGÍA LiDAR DE ALTA RESOLUCIÓN J. FERNÁNDEZ, G. GUTIERREZ…….………………………………………………… 459 EVIDENCIAS DE MINERÍA HIDRÁULICA ROMANA EN LA SIERRA DE PIAS (VALONGO, PORTUGAL) R. MATÍAS, J. FONTE, A. LIMA, A. MONTEIRO, V. GRANDA, J. MOUTINHO, J. SILVA, P. AGUIAR ……………………………………………..…… 481 MINERÍA AURÍFERA ROMANA EN EL CAMPO FILONIANO LUCILLO-VILLALIBRE. SIERRA DEL TELENO (LEÓN-ESPAÑA) R. MATÍAS, S. GONZÁLEZ-NISTAL ……...………………………………………..…… 499 DELIMITACIÓN DE UN NUEVO Y EXTENSO YACIMIENTO AURÍFERO PRIMARIO EN LA SIERRA DEL TELENO (LEÓN-ESPAÑA) SIGUIENDO LAS EVIDENCIAS DE MINERÍA ROMANA R. MATÍAS, S. GONZÁLEZ-NISTAL ……….……………………………………...…… 519 SISTEMAS DE INFORMACIÓN GEOGRÁFICA Y BASES DE DATOS PARA EL CONOCIMIENTO DE LA MINERÍA Y LA METALURGIA DEL BRONCE, EL ORO Y LA PLATA EN EL ORIENTALIZANTE EXTREMEÑO J. M. MURILLO ……………………………...………………………………...…………. 543 MINERÍA HISTÓRICA Y PREHISTÓRICA EN ILLA DEN COLOM (MAHÓN, MENORCA) L. PERELLÓ, B. LLULL, M.A. HUNT …………………………………………………… 569 NUEVAS LÍNEAS DE ESTUDIO HISTÓRICO ARQUEOLÓGICO DE LAS CANTERAS DE MÁRMOL DE ALMADÉN DE LA PLATA (SEVILLA, ESPAÑA) R. TAYLOR ………………………………………….…………..……...……………..…… 589 MINERÍA HISTÓRICA EN PERALEDA DE SAN ROMÁN (CÁCERES) S. DE LA LLAVE, A. ESCOBAR ………………………………………………...…..…… 601 x XV CONGRESO INTERNACIONAL SOBRE PATRIMONIO GEOLÓGICO Y MINERO. XIX SESIÓN CIENTÍFICA DE SEDPGYM. LOGROSÁN, 2014. ISBN 978 – 84 – 693 – 1675 – 7. Pp. i-xvi. II.2.4. HISTORIA DE LA MINERÍA CENTENARIO DE UNA EXPLOTACIÓN HULLERA QUE AÚN RESPIRA: El POZO SOTÓN (SAN MARTÍN DEL REY AURELIO, ASTURIAS) P. FANDOS ……………………………………………………………………………..… . 617 EL TESORO DE LOS LAGOS MILIARIOS ASTURIANOS. CENSO DE LAGUNAS RELACIONADAS CON ANTIGUAS MINERÍAS EN LAS SIERRAS DE ASTURIAS: ARAMO, CUERA, FANFARAÓN, OUROSO, SUEVE, ETC. P. FANDOS ……………………………………………….………………………….…… 645 CAVERNAS CACEREÑAS QUE PUDIERON HABER SIDO ANTIGUAS MINAS. INVENTARIO INICIAL EN LA PROVINCIA DE CÁCERES DESDE LA PERSPECTIVA DE LAS CAVERMINAS P. FANDOS ........................................................................................................................... 667 MINAS DE “CARVÃO DE PEDRA” DE VALVERDE E CABEÇO DO VEADO (PORTUGAL): INTERMITÊNCIA E PERSISTÊNCIA J. M. BRANDÃO, P. CALLAPEZ … ……………………….….…………………………. 697 DIEGO DE LARRAÑAGA, UN INGENIERO DE MINAS QUE CAMBIÓ LA EXPLOTACIÓN MINERA EN LAS MINAS DE ALMADÉN (CIUDAD REAL) L. MANSILLA, A. GALLEGO-PRECIADOS ……..………………………………….…. 717 POLÉMICA CIENTÍFICO-TECNOLÓGICA Y CONFLICTOS EN EL SIGLO XIX A CAUSA DE UN PROYECTO DE LEY QUE RESERVABA AL ESTADO LAS MINAS DE FOSFORITA DE LOGROSÁN, Y CUALESQUIERA OTRAS DEL REINO J. PASTOR, J. D. PASTOR, J. F. PASTOR, Á. PÍRIZ ………….………………….…… 737 II.2.5. PROTECCIÓN Y VALORIZACIÓN DEL PATRIMONIO GEOLÓGICO Y MINERO PUESTA EN VALOR DEL PATRIMONIO MINERO EN CONTEXTOS TURÍSTICOS (DOS CASOS DEL SUDESTE ESPAÑOL) D. CARMONA , R. TRAVÉ-MOLERO .............................................................................. 753 EL PATRIMONIO MINERO DE SAN NICOLAS DE VALLE DE LA SERENA: INVESTIGACIÓN, AGRESIONES Y DESPROTECCIÓN. J.J. MINAYA, A.D. LÓPEZ …………................................................................................. 767 xi XV CONGRESO INTERNACIONAL SOBRE PATRIMONIO GEOLÓGICO Y MINERO. XIX SESIÓN CIENTÍFICA DE SEDPGYM. LOGROSÁN, 2014. ISBN 978 – 84 – 693 – 1675 – 7. Pp. i-xvi. UNA PROPUESTA DE GESTIÓN PARA LA CONSERVACIÓN Y PUESTA EN VALOR DEL PATRIMONIO FERROVIARIO EN LA CUENCA DEL GUADIATO P. ALLEPUZ, M.C. GARCÍA, F. VICENTE ……………………………….….……....... 789 EL SENDERO INTERNACIONAL DE LOS APALACHES, EL SENDERO MÁS LARGO DEL MUNDO, UNIÓN DE PUEBLOS Y CULTURAS A AMBOS LADOS DEL OCÉANO ATLÁNTICO R. HERNÁNDEZ …………………………………………….………………………….… 805 xii XV CONGRESO INTERNACIONAL SOBRE PATRIMONIO GEOLÓGICO Y MINERO. XIX SESIÓN CIENTÍFICA DE SEDPGYM. LOGROSÁN, 2014. ISBN 978 – 84 – 693 – 1675 – 7. Pp. i-xvi. III. ÍNDICE DE AUTORES AUTOR PÁGINAS AGUIAR, P. ALFONSO, P. ALIAS, M. A. ALLEPUZ, P. ALMANSA, E. AMARÉ, M. P. ANDREWS, P. ARRUFAT, L. 481 177, 391, 403, 415, 423, 437 203 789 279 291 51 203 BARRERA, J. M. BOIXEREU, E. BRANDÃO, J. M. BRAVO, F. BRÜGMANN, G. 129 87 697 391, 403, 415, 423, 445 1 CALLAPEZ, P. CANO, V. A. CARDONA, V. CARMONA, D. CARVALHO, C. NETO DE CHAMBINO, E. CLIMENT, F. COMENDADOR, B. 697 255 391, 403, 415, 423, 437 753 145 145 221, 289, 343, 391, 403, 415, 445 21 DE LA LLAVE, S. DEL RAMO, A. DÍAZ, C. DUQUE, D. M. 601 187 203 63 ESCOBAR, A. 601 FANDOS, P. FERNÁNDEZ, F. J. FERNÁNDEZ, J. FIGUEIREDO, E. FONTE, J. 617, 645, 667 105 459 21 21, 481 GALLEGO-PRECIADOS, A. GARCÍA, M.C. 717 255, 789 xiii XV CONGRESO INTERNACIONAL SOBRE PATRIMONIO GEOLÓGICO Y MINERO. XIX SESIÓN CIENTÍFICA DE SEDPGYM. LOGROSÁN, 2014. ISBN 978 – 84 – 693 – 1675 – 7. Pp. i-xvi. GARCIA-VALLES, M. GIL, A GONZÁLEZ-NISTAL, S. GRANDA, V. GUILLÉN, F. GUTIERREZ, G. 177 353, 373 499, 519 481 187, 203 459 HERNÁNDEZ, A. HERNÁNDEZ, R. HUNT, M. A. 279 805 63, 569 LIMA, A. LLULL, B. LÓPEZ, A. 481 569 767 MANSILLA, L. MATIAS, R. MINAYA, J. J. MEUNIER, E. MONTEIRO, A. MOUTINHO, J. MOYANO, A. MUÑOZ, M. MURILLO, J. M. 717 177, 221, 229, 289, 343, 391, 403, 415, 423, 437, 445 481, 499, 519 767 21 481 481 255 255 543 NESSEL, B. 1 ORCHE, E. ORCHE, P. 291, 323 291, 323, 353, 373 PARCERISAS, D. PASTOR, J. PASTOR, J. D. PASTOR, J. F. PAVÓN, I. PERELLÓ, L. PÉREZ DE GUZMÁN, R. PERNICKA, E. PIRIZ, A. PIZARRO A. PUIG, J. S. 391, 403, 415, 423, 437 737 737 737 63 569 353, 373 1 737 235 229, 423, 437 REBOLLADA, E. RODRIGUES, J. RODRÍGUEZ , A. 105 145 63 MATA-PERELLÓ, J. M. xiv XV CONGRESO INTERNACIONAL SOBRE PATRIMONIO GEOLÓGICO Y MINERO. XIX SESIÓN CIENTÍFICA DE SEDPGYM. LOGROSÁN, 2014. ISBN 978 – 84 – 693 – 1675 – 7. Pp. i-xvi. ROSILLO, J. F. RUBIO, C. RUÍZ, M. 203 289, 343 255 SANCHEZ, A. SANZ, J. SILVA, J. SILVESTRE, M. SOS, A. 203 221, 229, 445 481 279 41 TAYLOR, R. TORRAS, V. TRAVÉ, R. 589 177 753 VICENTE, F. VILALTELLA, J. VINYES, J. 789 221, 229, 391, 403, 415, 423, 437, 445 289, 343 xv XV CONGRESO INTERNACIONAL SOBRE PATRIMONIO GEOLÓGICO Y MINERO. XIX SESIÓN CIENTÍFICA DE SEDPGYM. LOGROSÁN, 2014. ISBN 978 – 84 – 693 – 1675 – 7. Pp. i-xvi. xvi XV CONGRESO INTERNACIONAL SOBRE PATRIMONIO GEOLÓGICO Y MINERO. XIX SESIÓN CIENTÍFICA DE SEDPGYM. LOGROSÁN, 2014. ISBN 978 – 84 – 693 – 1675 – 7. Pp. 1 – 20. TIN ISOTOPES AND THE SOURCES OF TIN IN THE EARLY BRONZE AGE ÚNĚTICE CULTURE B. NESSEL1; G. BRÜGMANN2; E. PERNICKA1,2 (1) Institut für Geowissenschaften, Universität Heidelberg, 69120 Heidelberg, Germany (2) Curt-Engelhorn-Zentrum Archäometrie GmbH, 68159 Mannheim, Germany RESUMEN: El bronce, una aleación de Cu-Sn, aparece a principios del tercer milenio a.C., y se convirtió en epónimo de un periodo de más de dos mil años de duración. Mientras se han hecho grandes progresos en relación con la procedencia del cobre, el origen del estaño se mantiene como uno de los problemas más persistentes de la investigación arqueológica. Además de las dificultades para, aplicando las técnicas tradicionales textuales, geológicas y de evidencias arqueológicas, hallar depósitos minerales de estaño y yacimientos con actividades productivas, explotados en épocas prehistóricas, incluso los enfoques geoquímicos se han mostrado problemáticos al tratar de relacionar fuentes potenciales de mineral con artefactos arqueológicos. Ni los patrones de presencia y abundancia de elementos traza ni las composiciones de isótopos de plomo ofrecen huellas dactilares definidas que permitan rastrear el origen del estaño hasta sus fuentes, sobre todo cuando ha sido aleado con cobre. La composición isotópica del mismo estaño, en sus minerales y aleaciones de bronce, puede ser una herramienta prometedora para obtener respuesta a las preguntas sin resolver. En este trabajo se tratan cuestiones metodológicas relacionadas con la obtención de datos de isótopos de estaño de objetos metálicos. También se presenta la primera investigación llevada a cabo sobre isótopos de estaño en objetos metálicos de la Edad del Bronce Antiguo de la región de Halle (Alemania), integrados en la centroeuropea Cultura de Ún tice. Los resultados indican que bronces de diferentes depósitos y con contenido variable de estaño (entre 1 a 12 %, en peso) muestran un reducido rango de composiciones isotópicas de estaño ĚĚδ 124Sn/120Sně = 0.24±0.04‰ě. Esas proporciones isotópicas concuerdan bien con los datos publicados de minerales de casiterita de los montes Erzgebirge. Así, parece posible que en la Cultura de Ún tice se utilizaran minerales de estaño locales, a pesar de que no se tienen evidencias arqueológicas de minería prehistórica de estaño en esa región. PALABRAS CLAVE: Cultura de Ún tice, ratios isotópicos de estaño -Sn-, Alemania central ABSTRACT: Bronze, a Cu-Sn alloy, occurred during the early third millennium B.C., and became an eponym for an epoch lasting more than two thousand years. While great progress has been made concerning the provenance of copper, the origin of tin remains as one of the knottiest problems in archaeology. Apart from the difficulties to find tin deposits and production sites that were exploited in prehistoric times by applying traditional textual, geological and archaeological evidence, even geochemical approaches proved to be problematic, if one attempts to associate potential ore sources with archaeological artefacts. Neither trace element concentrations and abundance patterns nor lead isotopic compositions offer defined fingerprints that can trace tin back to its source, especially when alloyed with copper. The isotopic composition of tin itself, in its ores and bronzes, may be a promising tool for answering the open questions. This paper discusses methodical issues in acquiring tin isotope data from metal objects. It also presents the first tin isotopic research on Early Bronze Age metal artefacts from the region of Halle, Germany, which belong to the central European Ún tice Culture. The results indicate that bronzes from different hoards and with variable tin contents (1 to 12 wt. %) display a narrow range in the tin isotopic composition Ěδ 124Sn/120Sně = 0.24±0.04‰ě. The isotope ratios agree well with published data of cassiterites from the Erzgebirge. It seems thus likely that the Ún tice Culture used the local tin ores, even though there is no archaeological evidence of prehistoric tin mining in this region. KEY WORDS: Ún tice Culture, tin-Sn- isotope ratios, Central Germany 1 XV CONGRESO INTERNACIONAL SOBRE PATRIMONIO GEOLÓGICO Y MINERO. XIX SESIÓN CIENTÍFICA DE SEDPGYM. LOGROSÁN, 2014. ISBN 978 – 84 – 693 – 1675 – 7. Pp. 1 – 20. INTRODUCTION The archaeological Metal Ages are traditionally considered to begin with the Bronze Age shortly before the beginning of the third millennium BC in the Mediterranean and at the end of that century in Central Europe although copper smelting and the use of lead and silver is attested long before that (e. g. Pernicka et al., 1990; Radivojević et al., 2010). The first occurrence of copper with the typical fahlore signatures is directly connected with the technology of smelting primary ores and can be dated to the Eneolithic. The use of fahlore copper intensified in the Early Bronze Age and became the predominant material to produce metal objects. At the End of the Early Bronze Age the technological process for smelting chalcopyrite was developed. Chalcopyrite copper was used instead of fahlore copper more or less immediately, which was followed by a high intensive mining for this mineral in the Middle Bronze Age. The people of the Late Bronze Age Urnfield Culture changed the ore usage pattern, and started to use fahlore again in addition to mining after chalcopyrite. Material analyses of artifacts shows that both materials were intentionally mixed during the smelting processes (Lutz y Pernicka, 2009). If we go beyond the descriptive use of the term Bronze Age, we are bound to encounter several questions that have been intensively discussed but never satisfactorily answered. The provenance of Bronze Age tin is one of these unsolved research problems. Several origins of tin have been suggested during a long research history: besides Anatolia (Yener, 2008), also Lebanon, Serbia/Macedonia (McGeehan-Liritzis y Taylor, 1987; Durman, 1997), Sardinia (Benvenuti et al., 2003; Lo Schiavo, 2003), Crete, southern Greece and Egypt (Bertiou y Cleziou, 1982ě have been mentioned as Europe’s possible tin suppliers. Similar suggestions have been made about the Caucasus, Turkmenistan and Iran. Even very far away regions as Central Asia, Western China, Malaysia or Nigeria (Dayton, 1971) were considered to be potential tin suppliers in prehistory. These suggestions are tied to the discovery of several ancient tin mines. Some of them are geologically feasible and some are not. When it comes to the tin sources used in the Bronze Age in Central Europe currently Cornwall, the Erzgebirge, the Iberian Peninsula or Bretagne seems to be most likely (Figure 1). But prehistoric mining activities, especially from the European Bronze Age, have only been found in Cornwall (Tylecote et al., 1989) and the Iberian Peninsula (Sos Baynat, 1967; Merideth, 1998; Merideth, 1998a; Montero Ruiz, 2010; Rodríguez Díaz et al., 2013). Nevertheless far more east in 2 XV CONGRESO INTERNACIONAL SOBRE PATRIMONIO GEOLÓGICO Y MINERO. XIX SESIÓN CIENTÍFICA DE SEDPGYM. LOGROSÁN, 2014. ISBN 978 – 84 – 693 – 1675 – 7. Pp. 1 – 20. the Taurus Mountains (Muhly, 1993; Yener, 2008), Iran (Nezafati et al., 2006; Nezafati et al., 2009) and Central Asia (Cierny et al., 2005; Boroffka y Parzinger, 2003) traces of prehistoric mining activities have also been found. Tin bronze was however not the first copper alloy: arsenic bronze dominates in the fourth millennium BC in Central Europe as well as in the Mediterranean. If one compares the mechanical properties of arsenic and tin bronze, the latter is the superior alloy. Tin bronze is harder and stronger, and has overall better mechanical properties than arsenic bronze. The most important argument for the invention of tin bronze is that it constitutes an intentional alloy, while arsenic bronze is not. There is a fundamental difference in the way these alloys were prepared. As a consequence, the composition of tin bronze alloys can be controlled much more carefully. To control the composition of arsenic bronze alloys is in comparison rather difficult. Figure 1. Used tin sources in Central European Bronze Age cultures: 1 Cornwall; 2 Erzgebirge; 3 Bretagne; 4 Iberian Peninsula. There are only few bronze objects from the first phase of the European Bronze Age, but from around 1800 BC the majority of metal objects consists of bronze. In Asia, bronze occurs early in the Indus valley but is relatively rare on the Iranian highland. It reaches southern China and southeastern Asia only in the second millennium BC, although these 3 XV CONGRESO INTERNACIONAL SOBRE PATRIMONIO GEOLÓGICO Y MINERO. XIX SESIÓN CIENTÍFICA DE SEDPGYM. LOGROSÁN, 2014. ISBN 978 – 84 – 693 – 1675 – 7. Pp. 1 – 20. regions have many tin deposits. It is tempting to assume that this vast distribution over a relatively short time period was not accidental, but follows a certain pattern associated with the emergence of more complex social organizations. During the past decades, the isotopic composition of lead has been used successfully in tracing Chalcolithic and Bronze Age metals back to their ore sources. The method utilizes the fact that three of the four stable lead isotopes are continuously being produced by the radioactive decay of omnipresent uranium and thorium in such a way that the isotope abundance ratios are affected to a different degree. As a result, different ores may contain lead with distinctly different abundance ratios, and since this isotopic signature is only imperceptibly changed in all subsequent metallurgical steps on the way from ore to artifact, different artifacts can also be expected to be distinguishable by the isotopic composition of their lead (Pernicka et al., 1984). However, the applied method does not reveal the provenance of the tin but rather of copper. This study reports the Sn isotope ratios of international reference materials and of 13 bronze objects from two Early Bronze Age hoards of the Ún tice Culture near Halle in Germany. An outline of the analytical procedure and the data quality will be described and implications with regard to the provenance of the tin will be discussed. MATERIALS AND ANALYSES ÚN TICE CULTURE Within the search for the origin of Bronze Age tin, the Early Bronze Age in Central Europe is in current focus. The Ún tice Culture is the main Early Bronze Age culture in this area. The eponym necropolis is located in the Czech Republic in the vicinity of Prague. Chronologically, the Ún tice Culture is dated between 2300 and 1500 BC and it is generally divided into an early (A1, 2300-1900 BC) and a younger or classical phase (A2, 1900-1500 BC). This chronology was established by the classification of the archaeological material (e. g. Zich, 1996; Bartelheim, 1998) supported by dendrochronology and radiocarbon dates (Becker et al., 1989). Typical Ún tice culture materials are found between northern Lower Austria, the western part of Slovakia, Moravia and Bohemia, the greater region of Middle Germany, Silesia and greater Poland. The distribution area to the south is more or less limited by the Danube. Ten subgroups tied to the specific regions mentioned have been established. One of them is 4 XV CONGRESO INTERNACIONAL SOBRE PATRIMONIO GEOLÓGICO Y MINERO. XIX SESIÓN CIENTÍFICA DE SEDPGYM. LOGROSÁN, 2014. ISBN 978 – 84 – 693 – 1675 – 7. Pp. 1 – 20. the so called Central German or Saxon-Thuringian group, which is the focus of the following discussion. The majority of Ún tice settlements consists of several houses congregated in villages or hamlets. Larger settlements, with ramparts and wooden fortifications are also known, but they do not occur regularly (e. g. Müller et al., 2010). Ún tice graves can be divided in two categories: flat graves and barrows. Skeletal inhumations were the most common burial practice, but cremation graves also occurred in rare cases. The tumulus burials or princly graves of Leubingen (1942 BC) and Helmsdorf (1840 ± 10 BC) are dated to the younger or classical phase and can clearly be seen as graves for members of an already established elite (Zich, 2006: 156). These elites probably controlled the rural economy, which was characterized by agriculture and animal husbandry. More important may have been the control over the rich and technologically advanced metal industry which reached a first high point within the area of the Ún tice Culture. This metal industry was not only active, it was also very innovative. Hoards with objects consisting mainly of tin bronze, sometimes containing several hundred items like tools, jewelry, weapons and ingots, appear in large numbers compared to other European regions. Most finished products are cast and later revised by forging. Semi-finished objects and the majority of ingots are lacking a revision. Although the area of the Ún tice Culture comprises several potential ore sources, the use of one or more specific mineral deposits, which can be directly connected to the Early Bronze Age, have still not been identified via prospection or metal analyses. However, import of raw metal from the copper mines in the eastern Alps is highly likely (Lutz y Pernicka, 2009). If tin was also imported, in mineral or raw metal form, or if the people of the Ún tice Culture mined it in the Erzgebirge or the Slovakian Carpathian mountains is currently under discussion. Systematic investigations of ores from the tin provinces in the Erzgebirge and Cornwall demonstrate that the tin isotope ratios vary greatly. On the other hand, significant differences between ores from diverse sources are also found (Haustein et al., 2010). Previous investigations have shown, that the tin of the Sky Disc of Nebra most likely derives from Cornwall rather than the much closer Erzgebirge (Haustein y Pernicka, 2008). Although this was only a pilot study, the approach is the foundation for the procedure which is currently developed and established by our project to trace ancient tin via isotopes. Since the Nebra Sky Disc was the first object, which has been 5 XV CONGRESO INTERNACIONAL SOBRE PATRIMONIO GEOLÓGICO Y MINERO. XIX SESIÓN CIENTÍFICA DE SEDPGYM. LOGROSÁN, 2014. ISBN 978 – 84 – 693 – 1675 – 7. Pp. 1 – 20. investigated using tin-isotope analysis, it was reasonable to investigate archaeological objects of a similar chronological position from neighboring regions in a next step. The Early Bronze Age metal artifacts of the Saxon-Thuringian group of the Ún tice Culture includes torques, flat and flange axes, triangular daggers, bracelets as well as disk- and paddle-headed pins, which are distributed over a wide area of Central Europe and beyond. Some of these objects, such as torques and curled rings have been found in graves, but the bulk of the material is found in hoards, which can contain up to more than six hundred pieces. Some hoards contain only one specific type of object, others contain artifacts of different types. Nonmetallic items such as amber also occur in mixed hoards and graves from the Early Bronze Age and the Ún tice Culture. Usually, most of the items were deposited in a complete and undamaged state, which distinguishes Early Bronze Age hoards from those of later periods. The 13 chosen Early Bronze Age metal artifacts, used for the determination of Sn isotopic composition, belong to the first hoard from Gröbers-Bennewitz in Saxony (v. Brunn, 1959: 57) and to the hoards of Dieskau II and III in Saxony-Anhalt (v. Brunn, 1959: 55-56). The former hoard from Gröbers-Bennewitz contains 293 flanged axes, of which four items have been analysed. In contrast, the mixed hoards of Dieskau contain tools, jewelry and weapons. From Dieskau II in addition to a flanged axe, four bracelets and a dagger were chosen to determine their isotopic composition. Furthermore, a double axe and two bracelets from the Dieskau III hoard belong to the sample set of the Ún tice bronzes. DETERMINATION OF THE SN ISOTOPIC COMPOSITION IN ARCHEOLOGICAL TIN BRONZE OBJECTS The fractionation of non-traditional stable isotopes such as those of Cu, Zn, Fe, etc. has become an important tool in archeological, biological, earth, and environmental sciences. In particular the development of multi-collector ICP-MS (MC-ICP-MS) has allowed the very precise determination of isotope ratios in a variety of samples including meteorites, basalts, metals, and minerals which trace the redistribution of metals during low and high temperature processes such as planet and core formation, genesis of magmas and ore deposits, as well as smelting. In particular the ability of the ICP source to ionize nearly all elements in the periodic table has given this technique a distinct advantage over the traditional thermal ionization mass spectrometry (TIMS). 6 XV CONGRESO INTERNACIONAL SOBRE PATRIMONIO GEOLÓGICO Y MINERO. XIX SESIÓN CIENTÍFICA DE SEDPGYM. LOGROSÁN, 2014. ISBN 978 – 84 – 693 – 1675 – 7. Pp. 1 – 20. This is especially true for the case of tin. Its high ionization potential (7.3 eV) made TIMS measurements of the isotope ratios with precisions of better than 1‰ very difficult and early studies of archaeological and geological samples (bronze, cassiterite) already showed that the isotopic fractionation is even smaller than that (Rosman et al. 1984; McNaughton/Rosman, 1991; Budd et al., 1995; Begemann et al., 1999; Gale, 1997; Yi et al., 1999). The introduction of the MC-ICP-MS triggered new archaeological provenance studies fingerprinting Sn minerals and Sn-bronze (Cu-Sn alloy) and tin isotope variations up to 0.55 ‰ per unit mass have been observed (Lee/Halliday, 1995; Clayton et al., 2002; Haustein et al., 2010; Balliana et al., 2013; Yamazaki et al., 2013). MATERIALS AND SAMPLE PREPARATION For analyses, commercially available single-element stock solutions of Sn (NIST 3161a, Lot#070330, reference material provided by the National Institute of Standards and Technology) and Sb (ICP–AES, Lot No. PSBH24/13, supplied by Spetec GmbH) were diluted with 0.4 M HNO3 to solutions containing 1µg/ml Sn and Sb. The Sb standard is used in order to correct the mass fractionation occurring in MC-ICP-MS analysis. There is no certified isotopic reference material available for Sn analysis, therefore, an inhouse isotopic standard was prepared from an ultraclean tin metal (Puratronic, Johnson Matthey, Batch W14222). All Sn isotope ratios given here are reported in δ notation relative to this standard. Several studies have used this tin metal before as an in house standard (an overview is given by Haustein et al., 2010). However, only a rough comparison with published data is possible due to different normalization procedures, use of variable Sb solutions and the use of different isotope ratios. For validation purposes and in order to facilitate inter-laboratory comparison of the isotope data we also determined the Sn isotopic composition of a certified international reference material made of bronze such as BAM-211 (G-SnBz10, Lot 300, from the Bundesanstalt für Materialprüfung, Berlin). The determination of the tin isotope composition in tin bronze necessitates a complex sample preparation including the dissolution of the sample and the isolation of Sn from the matrix components. The digestion and separation procedures were done in a Class 100 clean laboratory at the Curt-Engelhorn-Zentrum für Archäometrie in Mannheim, Germany. 7 XV CONGRESO INTERNACIONAL SOBRE PATRIMONIO GEOLÓGICO Y MINERO. XIX SESIÓN CIENTÍFICA DE SEDPGYM. LOGROSÁN, 2014. ISBN 978 – 84 – 693 – 1675 – 7. Pp. 1 – 20. About 1-15 mg of bronze samples were dissolved overnight in 6 N HCl and H2O2 at 90°C in closed Savillex® pressure vials. In order to minimize matrix effects and to avoid isobaric interferences during the measurement it is necessary to purify the bronze solutions which contain >80 wt. % Cu but may also have high and variable concentrations of Fe, Pb, As, Sb, and Cd. The chemical isolation of Sn was achieved with the anion-exchanger TRU-Resin (particle size: 50-100 µm, Eichrom Technologies, Inc., #TRU-B50-S) which strongly retains Sn on the resin in HCl solutions while most other metals will pass through (Huff/Huff, 1993). Tin can be effectively eluted by equilibrating the resin with HNO3. Our chromatographic protocol has been optimized with solutions of BAM211 and it turns out to be similar to that of Balliana et al. (2013) and Yamazaki et al. (2013). The recovery rate of the separation procedure for Sn determined with the BAM211 reference material is 100±4 %; this is within the analytical uncertainty of the analyses which have been made by ICP-OES (iCAP 7200, Thermo Scientific, Bremen). TIN ISOTOPE MEASUREMENTS BY MC-ICP-MS A Thermo Fisher Scientific Neptune Plus (Bremen, Germany) MC-ICP-MS was used for all measurements. It was operating in low resolution mode and is equipped with 9 Faraday cups and a combination of cyclonic and Scott-type spray chambers with a 100 µL/min PFA nebulizer. Tin has ten isotopes (masses 112, 114, 115, 116, 117, 118, 119, 120, 122, 124), however, only the intensities of the most abundant masses of tin (>116) together with 121Sb and 123Sb were simultaneously collected by the 9 Faraday cups. For one analysis 100 measurements with an 8.4 integration time were taken. The measurements followed a sequence of blank-standard-blank-sample-blank-standardblank, and in order to minimize memory effects the system was rinsed with 0.4 N HNO3 for 10 minutes after each sample and standard analysis. Each measurement session included the analysis of up to 22 standards and 11 samples and lasted 20 hours. On-line the measured intensities were blank corrected, but the calculation of the isotope ratios, the instrumental mass bias correction and the removal of outliers based on 2σ tests were done off-line. The mass bias correction followed the regression procedure described by Baxter et al. (2006). 8 XV CONGRESO INTERNACIONAL SOBRE PATRIMONIO GEOLÓGICO Y MINERO. XIX SESIÓN CIENTÍFICA DE SEDPGYM. LOGROSÁN, 2014. ISBN 978 – 84 – 693 – 1675 – 7. Pp. 1 – 20. RESULTS AND DISCUSSION ISOTOPIC COMPOSITION MATERIAL OF STANDARD AND REFERENCE The Sn isotope ratios monitored during the study have the most abundant as 124 denominator ( 116 Sn/ 120 Sn, 117 120 Sn/ Sn, 118 120 Sn/ Sn, 119 Sn/ 120 Sn, 120 Sn isotope 122 Sn/120Sn, Sn/120Sn) and –in order to facilitate a comparison with previous data (Haustein et al., 2010)- 122Sn/116Sn and 117Sn/119Sn are calculated as well. The uncertainty of these ratios in the in-house standard JMC during single measurements ranges from 0.005 to 0.04 ‰ (2SE). During a measurement session (22 measurements) the isotope ratios commonly reproduce on the delta scale from about to 0.01 to 0.05 ‰ Ě2RSDě. The reference solution NIST3161a and the bronze BAM211 display similar uncertainties on the delta scale Ě0.01 to 0.06 ‰ě ĚFigure 2). The isotope data of BAM211 represent the average of 12 different dissolutions, thus its analytical variation represents the combined analytical uncertainty of the Sn isotope analysis. Both reference materials indicate distinct isotope fractionation and are enriched in light isotopes relative to the in-house JMC standard to different degrees ĚBAM211: 0.013‰ per unit mass; NIST 3161a: 0.030 ‰ per unit mass; Figure 2). Similar light isotope enrichment in NIST3161a has been observed by Yamazaki et al. (2013), however, the relationship between their and our in-house standards is not known. Figure 2. Summary of analytical errors and tin isotopic compositions international reference materials (BAM211, NIST3161a) and Cu-alloys from the Gröbers-Bennewitz and Dieskau finds. Error bars represent 2 standard deviations (2SD) of the average value of single isotope ratios. X denotes the mass of 116Sn, 117Sn, 118Sn, 119Sn, 122Sn, and 124Sn. CHEMICAL COMPOSITION OF ÚN TICE BRONZE ARTEFACTS In a pilot study the hoards of Dieskau II and III and Gröbers-Bennewitz near Halle in Germany have been selected for the determination of the tin isotopic composition 9 XV CONGRESO INTERNACIONAL SOBRE PATRIMONIO GEOLÓGICO Y MINERO. XIX SESIÓN CIENTÍFICA DE SEDPGYM. LOGROSÁN, 2014. ISBN 978 – 84 – 693 – 1675 – 7. Pp. 1 – 20. because of their different chemical composition. In a systematic study of the composition of Early Bronze Age metal finds from Central Germany, Lutz and Pernicka (2009) observed that about 90 % of the bronze artefacts were made by smelting fahlore. Such alloys are characterized by high concentrations of As and Sb (>1 wt.%) and about 1 wt.%. Ag. In particular the early finds have rather high Ni contents (>0.1 wt.%). These are typical features of the artefacts of the Dieskau III bronzes, although Dieskau II also contains a couple of low Ni objects (Figure 3). In contrast, the GröbersBennewitz objects have systematically lower Sb, Ag (<1 wt.%), and Ni contents (<0.1 wt. %; Figure 3). These differences indicate that different Cu ore types had been used by the ancient smelters when producing the alloys of the two finds. Figure 3. The chemical composition of bronze metal from the Gröbers-Bennewitz and Dieskau finds. Note the significantly lower Sb and Ni contents in the objects from Gröbers-Bennewitz compared with those of the Dieskau hoard. Unpublished data from the DFG-project Aufbruch zu neuen Horizonten. Die Funde von Nebra, Sachsen-Anhalt, und ihre Bedeutung für die Bronzezeit Europas. The Sn distribution also differs among the two finds. The Dieskau samples have highly variable Sn contents (<0.1 to 11 wt.%), but in the Gröbers-Bennewitz artefacts it is rather constant and ranges only from 1.9 wt.% to 6.1 wt.%. For this study we focused on Sn samples having more than 1.0 wt.% Sn. TIN ISOTOPIC COMPOSITION OF BRONZE ARTEFACTS FROM THE ÚN TICE CULTURE: THE PROVENANCE PROBLEM Figure 2 summarizes the isotopic composition of the bronze artefacts from the GröbersBennewitz und Dieskau finds. Both sample sets display the same fractionation behavior in that they are enriched in the heavy isotopes. In addition, the extent of fractionation is identical within analytical error. For example, the average δ124Sn/120Sn for Gröbers10 XV CONGRESO INTERNACIONAL SOBRE PATRIMONIO GEOLÓGICO Y MINERO. XIX SESIÓN CIENTÍFICA DE SEDPGYM. LOGROSÁN, 2014. ISBN 978 – 84 – 693 – 1675 – 7. Pp. 1 – 20. Bennewitz is 0.211± 0.037 ‰ and this is indistinguishable from that of Dieskau (δ 124 Sn/120Sn = 0.254 ± 0.037 ‰ě. Figure 4 shows the variation of the δ124Sn/120Sn values as a function of the chemical composition of the bronze alloys. Although three flanged axes tend to have lower ratios, an overall systematic relationship between chemical and isotopic composition cannot be recognized as, for example, Ni poor and Ni-rich metals show a similar range of δ124Sn/120Sn values. In addition, the isotopic composition cannot discriminate between objects with different functions (jewelry, weapon, tools, and ingots). Thus, although the chemical composition suggests different sources of the Cu ores for the different finds, tin appears to be derived from a single ore source (or from ore types which have similar isotopic compositions). Figure 4. Tin isotopic composition of metal alloys from the Gröbers-Bennewitz and Dieskau finds. Error bars represent 2 standard deviation of the average value. The cross symbol represents the 2SD combined uncertainty as determined from replicate analyses of reference material BAM211 (see Figure 2). The concentration of hoards in the Ún tice area of central Germany containing mainly tin bronze objects may lead one to suspect that tin originated from the two largest tin deposits in Europe, namely those of the Erzgebirge in eastern Germany and those of Cornwall and Devon in southern England. Recently Haustein et al. (2010) published about 80 tin isotope analyses of cassiterite from different deposits in these two regions (Figure 5). Cassiterites from both tin provinces show a large variation of δ122Sn/116Sn and δ117Sn/119Sn values. The ores of the Erzgebirge tend to have lighter tin isotopic compositions (δ122Sn/116Sn = 0.34±0.36 ‰ě than those of southern England (δ 122Sn/116Sn = 0.48±0.51 ‰ě, although there is a substantial overlap of the values. 11 XV CONGRESO INTERNACIONAL SOBRE PATRIMONIO GEOLÓGICO Y MINERO. XIX SESIÓN CIENTÍFICA DE SEDPGYM. LOGROSÁN, 2014. ISBN 978 – 84 – 693 – 1675 – 7. Pp. 1 – 20. Figure 5. Comparison of the tin isotopic composition of Cu-alloys from the Gröbers-Bennewitz and Dieskau finds with those of tin deposits from the Erzgebirge and Cornwall. Data for ore deposit are from Haustein et al. (2010). The cross symbol represents the 2SD combined uncertainty as determined from replicate analyses of the reference material BAM211 (see Figure 2). The Ún tice bronzes have isotopic compositions that plot in the core area defined by the data from the Erzgebirge (δ122Sn/116Sn = 0.17 ± 0.07 ‰ě. There are only a few data from Cornwall overlapping with those of Ún tice. Thus, it seems possible that the Ún tice Culture exploited the local tin ores in order to produce tools, jewellery and weapons made of tin bronze. CONCLUSION In our ERC funded multidisciplinary project Bronze Age Tin a new geochemical approach is combined with prehistoric archaeology, ancient history and geology to decipher the sources of tin and the origin of bronze technology in the third and second millennium BC. The project aims to expand and substantiate published tin isotope compositions and uses MC-ICP-MS to analyze ore samples of the known tin deposits in the Old World. This new promising method in combination with archaeological data will lead to a deeper knowledge of the production, distribution and consumption of tin bronze in the Bronze Age. The variation of isotope ratios in a variety of samples of metals and minerals can be used to trace the redistribution of metals during low and high temperature processes such as the genesis of ore deposits, as well as smelting. To get an idea of raw material supply and trade routes in Prehistory, provenance studies 12 XV CONGRESO INTERNACIONAL SOBRE PATRIMONIO GEOLÓGICO Y MINERO. XIX SESIÓN CIENTÍFICA DE SEDPGYM. LOGROSÁN, 2014. ISBN 978 – 84 – 693 – 1675 – 7. Pp. 1 – 20. and fingerprinting of Sn-minerals and Sn-bronzes as well as tin isotope variations need to be determined. Hitherto the chemical and isotopic composition of 13 bronze items of the Early Bronze Age Ún tice Culture have been analysed. Among the sampled items were flange axes, bracelets, a dagger and a double axe. Even if all this artefacts came from different hoards, actually they represent objects of everyday life and Bronze Age fashion. The results of the chemical analyses show that the Sn contents of the bronzes are higher than 1 wt.%. Since those high values are not expected in at that time widely used fahlore assemblages, the intentional addition of Sn to the alloy during the smelting process is likely. The determination of Sn isotope ratios in the items show similar isotopic compositions as data from ore samples of the Erzgebirge. Although there is an overlap with ore from Cornwall, this is only applicable for very few data. Thus, it seems likely that at least in the area of the Saxon-Thuringian group of the Ún tice Culture tin ores from the near Erzgebirge were used to produce items of tin bronze. Especially since there is no evidence for Bronze Age or even prehistoric mining activities, an exploitation of local ore sources need to be reconsidered. Besides that, the results emphasize once more the extraordinary meaning of the Sky Disc of Nebra, whose Sn isotope ratios match well with Cornwall tin ore samples. This suggests that in the Ún tice Culture for the production of items, which were used in everyday life, the close by ore sources of the Erzgebirge have been exploited, while the raw material for prestige items or those of religious significance were probably chosen carefully and maybe selected using specific criteria. Apparently the selection of an appropriate alloy did not exclude far away regions as suppliers, but was possibly related to the nature of the specific item. To describe the selection mechanisms of raw material in European Bronze Age communities more in detail, is left to future research. ACKNOWLEDGEMENTS We would like to thank the conference organizers and the city of Logrosán for the kind invitation to the XV Congreso International sobre Patrimonio Geológico y Minero in Logrosán. We also owe thanks to Dr. Mark A. Hunt Ortiz and the colleagues of the Museo Geológico-Minero Vicente Sos Baynat for their unlimited support in Logrosan and further cooperation. 13 XV CONGRESO INTERNACIONAL SOBRE PATRIMONIO GEOLÓGICO Y MINERO. XIX SESIÓN CIENTÍFICA DE SEDPGYM. LOGROSÁN, 2014. ISBN 978 – 84 – 693 – 1675 – 7. Pp. 1 – 20. Furthermore, we have to thank the European Research Council for the financial support of the project (Advanced Grant 323861 for Ernst Pernicka) and Dr. J. Lutz for kindly providing unpublished data of chemical analyses and interpretations of some Ún tice bronzes, analysed in the former project Aufbruch zu neuen Horizonten. Die Funde von Nebra, Sachsen-Anhalt, und ihre Bedeutung für die Bronzezeit Europas (FOR 550). BIBLIOGRAPHY Balliana, E.; Aramendía, M.; Resano, M.; Barbante, C.; Vanhaecke, F. 2013. Copper and tin isotopic analysis of ancient bronzes for archaeological investigation: development and validation of a suitable analytical methodology. Analytical and Bioanalalytical Chemistry 405 (9): 2973-2986. doi:10.1007/s00216-012-6542-1 Bartelheim, M. 1998. Studien zur b hmischen Aunjetitzer chorologische ultur: chronologische und Untersuchungen. 46, Bonn. Baxter, D. C.; Rodushkin I.; Engstrom E.; Malinovsky, D. 2006. Revised exponential model for mass bias correction using an internal standard for isotope abundance ratio measurements by multi-collector inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry 21 (4): 427-430. doi:10.1039/B517457K Becker, B.; Jäger, K.-D.; Kaufmann, D.; Litt, Th. 1989. Dendrochronologische Datierungen von Eichenhölzern aus der frühbronzezeitlichen Hügelgräbern bei Helmsdorf und Leubingen (Aunjetitzer Kultur) und an bronzezeitlichen Flusseichen bei Merseburg. Jahresschrift für mitteldeutsche Vorgeschichte 72: 299‒312. Begemann, F.; Kallas, K.; Schmitt-Strecker, S.; Pernicka, E. 1999. Tracing ancient tin via isotope analyses. In: A. Hauptmann, E. Pernicka, Th. Rehren und Ü. Yalgin (eds.), The Beginnings of Metallurgy. Der Anschnitt, Beiheft 9: 277‒284. Benvenuti, M.; Chiarantini, L.; Norfini, A.; Casini, A.; Guideri, S.; Tanelli, G. 2003. The Etruscan tin: a preliminary contribution from researches at Monte Valerio and Baratti-Populonia (Southern Tuscany, Italy). In: A. Giumlia-Mair/F. Lo Schiavo (Eds.), 14 XV CONGRESO INTERNACIONAL SOBRE PATRIMONIO GEOLÓGICO Y MINERO. XIX SESIÓN CIENTÍFICA DE SEDPGYM. LOGROSÁN, 2014. ISBN 978 – 84 – 693 – 1675 – 7. Pp. 1 – 20. The Problem of Early Tin. British Archaeological Reports. International Series, Oxford, 1199: 55–66. Boroffka, N.; Parzinger, H. 2003. Das Zinn der Bronzezeit in Mittelasien. Archäologie in Iran und Turan Bd. 5, , Mainz. Bouzek, J.; Koutecký, D.; Simon, K. 1989. Tin and prehistoric mines in the Erzgebirge (Ore Mountains): Some new evidence. Oxford Journal of Archaeology 8: 203‒212. v. Brunn, W. A. 1959. Die Hortfunde der frühen Bronzezeit aus Sachsen-Anhalt und Thüringen, Berlin. Cierny, J. 1995. Die Gruben von Muschiston in Tadschikistan-Stand die Wiege der Zinnbronze in Mittelasien?. Der Anschnitt 47, H. 1-2: 68‒69. Cierny, J.; Stöllner, Th.; Weisgerber, G. 2005. Zinn in und aus Mittelasien. In: al in, Ü.; Pulak, C.; Slotta, R.; Deutsches Bergbau-Museum Bochum (Eds.) Das Schiff von Uluburun : Welthandel vor 3000 Jahren : Katalog der Ausstellung des Deutschen Bergbau-Museums Bochum vom 15. Juli 2005 bis 16. Juli 2006, Bochum: 431‒448. Gale, N. H. 1997. The isotopic composition of tin in some ancient metals and the recycling problem in metal procenancing. Archaeometry 39 (1): 71-82. doi:10.1111/j.1475-4754.1997.tb00791.x Clayton, R.; Andersson, P.; Gale, N. H.; Gillis, C.; Whitehouse M. J. 2002. Precise determination of the isotopic composition of Sn using MC-ICP-MS. Journal of Analytical Atomic Spectrometry 17 (10): 1248-1256. doi:10.1039/B205835A Cleziou, S.; Bertiou, Th. 1982. Early Tin in the Near East. A Reassessment in the light of new evidence from Western Afghanistan. Expedition. The magazine of archaeology and anthropology, 25 (1): 14‒19 15 XV CONGRESO INTERNACIONAL SOBRE PATRIMONIO GEOLÓGICO Y MINERO. XIX SESIÓN CIENTÍFICA DE SEDPGYM. LOGROSÁN, 2014. ISBN 978 – 84 – 693 – 1675 – 7. Pp. 1 – 20. Dayton, J.E. 1971. The problem of tin in the ancient world, World Archaeology 3 (1): 49–70. Durman, A. 1997. Tin in Southeastern Europe? Opuscula Archeologia 21, 1997: 7‒14. Haustein, M.; Gillis, C.; Pernicka, E. 2010. Tin isotopy–a new method for solving old questions. Archaeometry 52 (5) :816-832. doi:10.1111/j.1475-4754.2010.00515.x Haustein M.; Pernicka, E. 2008. Die Verfolgung der bronzezeitlichen Zinnquellen Europas durch Zinnisotopie-eine neue Methode zur Beantwortung einer alten Frage. Jahresschrift für Mitteldeutsche Vorgeschichte 92: 387-418. Lee, D.-C.; Halliday, A. N. 1995. Precise determinations of the isotopic compositions and atomic weights of molybdenum, tellurium, tin and tungsten using ICP magnetic sector multiple collector mass spectrometry. International Journal of Mass Spectrometry and Ion Processes 146–147 (0):35–46.doi:http://dx.doi.org/10.1016/01681176(95)04201-U Lo Schiavo, F. 2003. The problem of early tin from the point of view of Nuragic Sardinia. In: A. Giumlia-Mair, F. Lo Schiavo (Eds.) The Problem of Early Tin. British Archaeological Reports. International Series 1199: 121–132. Oxford. Huff, E. A.; Huff, D. R. 1993. TRU-Spec and RE-Spec chromatography: basic studies and applications. In 34th ORNL/DOE Conference on Analytical Chemistry in Energy Technology, Gatlinburg, Tennessee. Lutz, J.; Pernicka, E. 2009. Spurenelementchemische und bleiisotopische Untersuchungen an frühbronzezeitlichen Metallfunden aus Mitteldeutschland. In: Borg., G.; Pöllmann, H. and Friese, K. (Eds.) Hallesches Jahrbuch für Geowissenschaften, DMG-Tagung 2009, 13-16. September in Halle: 149. McGeehan-Liritzis, V.; Taylor, J. W. 1987. Yugoslavian tin deposits and the Early Bronze Age industries of the Aegean region. Oxford Journal of Archaeology 6: 287‒300. 16 XV CONGRESO INTERNACIONAL SOBRE PATRIMONIO GEOLÓGICO Y MINERO. XIX SESIÓN CIENTÍFICA DE SEDPGYM. LOGROSÁN, 2014. ISBN 978 – 84 – 693 – 1675 – 7. Pp. 1 – 20. McNaughton N. J.; Rosman K. J. R. 1991. Tin isotope fractionation in terrestrial cassiterites. Geochimica et Cosmochimica Acta 55 (2): 499‒504. doi:http://dx.doi.org/10.1016/0016-7037(91)90007-R Merideth, C. 1998. An archaeological survey for ancient tin mines and smelting sites in Spain and Portugal. Mid-central western Iberian geographical region 1990‒1995. British Archaeological Reports. International Series 714. Oxford. Merideth, C. 1998. La mina el Cerro de San Cristobal: a Bronze Age tin mine (Extremadura, Spain). Papers from the Institute of Archaeology 9: 57‒69. Montero Ruiz, I. 2010. Minería y metalurgia en la investigación prehistórica. En I. Montero (ed.): Manual de Arqueometalurgia. Cursos de formación permanente para arqueólogos 1, Museo Arqueológico Regional de la Comunidad de Madrid y Sección de Arqueología del CDL de Madrid. Madrid: 53‒86. Müller, J.; Czebreszuk, J.; Kneisel, J. (Eds.) 2010. Bruszczewo II. Ausgrabungen und Forschungen in einer prähistorischen Siedlungskammer Großpolens. Studien zur Archäologie in Ostmitteleuropa 6. Bonn. Muhly, J. 1993. Early Bronze Age Tin and the Taurus, American Journal of Archaeology 97 (2): 239‒253. Nezafati, N.; Pernicka, E.; Momenzadeh, M. 2006. Ancient tin: Old question and a new answer. Antiquity. http://www.antiquity.ac.uk/projgall/nezafati308/l. Nezafati, N.; Pernicka, E.; Momenzadeh, M. 2009 Introduction of the Deh Hosein ancient tin-copper mine, western Iran: Evidence from geology, archaeology, geochemistry and lead isotope data. Türkiye Bilimler Akademisi Arkeoloji Dergisi/Turkish Academy of Sciences Journal of Archaeology 12: 223‒236. Pernicka, E.; Seeliger, T. C. , Wagner, G. A.; Begemann, F.; Schmitt-Strecker, S.; Eibner, C.; Öztunalı, Ö.; Baranyi, I. 1984. Archäometallurgische Untersuchungen in 17 XV CONGRESO INTERNACIONAL SOBRE PATRIMONIO GEOLÓGICO Y MINERO. XIX SESIÓN CIENTÍFICA DE SEDPGYM. LOGROSÁN, 2014. ISBN 978 – 84 – 693 – 1675 – 7. Pp. 1 – 20. Nordwestanatolien. Jahrbuch des Römisch-Germanischen Zentralmuseums Mainz 31: 533‒599. Pernicka, E. 1990. Gewinnung und Verarbeitung der Metalle in prähistorischer Zeit. Achte Theodor Mommsen-Vorlesung 1990. Jahrbuch des Römisch-Germanischen Zentralmuseums Mainz 37: 19‒129. Pernicka, E. 1998 Die Ausbreitung der Zinnbronze im 3. Jahrtausend. in: B. Hänsel (Ed.), Mensch und Umwelt in der Bronzezeit Europas. Abschlußtagung der Kampagne des Europarates: Die Bronzezeit: das erste goldene Zeitalter Europas an der Freien Universität Berlin, 17. ‒19. März 1997. Beiträge und Ergebnisse. (Kiel 1998): 135‒147. Radivojević, M.; Rehren, Th.; Pernicka, E.; Slijvar, D.; Brauns, M. 2010. On the origins of extractive metallurgy: new evidence from Europe. Journal of Archaeological Science 37, 11: 2775‒2787. Radivojević, M.; Rehren, Th.; uzmanović-Cvet ović, J.; Jovanović, M.; Northover, J. P. 2013,.Tainted ores and the rise of tin bronzes in Eurasia, c. 6500 years ago. Antiquity 87: 1030‒1045. Rodríguez Díaz, A.; Pavón Soldevila, I.; Duque Espino, D.; Ponce de León Iglesias, M.; Hunt Ortiz, M. A.; Merideth, C. 2013. La explotación tartésica de la casiterita entre los ríos Tajo y Guadiana: San Cristóbal de Logrosán (Cáceres). Trabajos de Prehistoria, 70 (1): 95‒113. Rosman, K. J. R.; Loss, R. D.; De Laeter, J. R. 1984. The isotopic composition of tin. International Journal of Mass Spectrometry and Ion Processes 56 (3): 281-291. doi:http://dx.doi.org/10.1016/0168-1176(84)85055-7 Sos Baynat, V. 1967. res). Madrid. 18 XV CONGRESO INTERNACIONAL SOBRE PATRIMONIO GEOLÓGICO Y MINERO. XIX SESIÓN CIENTÍFICA DE SEDPGYM. LOGROSÁN, 2014. ISBN 978 – 84 – 693 – 1675 – 7. Pp. 1 – 20. Tylecote, R. F.; Photos, E.; Earl, B. 1989. The composition of tin slags from the south‐west of England. World Archaeology 20: 434‒445. Yamazaki, E.; Nakai, S.; Yokoyama, T.; Ishihara, S.; Tang, H. 2013. Tin isotope analysis of cassiterites from Southeastern and Eastern Asia. Geochemical Journal 47 (1): 21-35. Yener, A. 2008. Revisiting Kestel Mine and Göltepe: the Dynamics of Local Provisioning of Tin during the Early Bronze Age. In: al ın, Ü.; Özbal, H.; Paşamehmetoğlu, A. G. ĚEds) Ancient Mining in Turkey and The Eastern Mediterranean, Brill, Ankara: 57‒64. Yi, W.; Halliday, A. N.; Lee, D.-C.; Christensen, J. N. 1995. Indium and tin in basalts, sulfides, and the mantle. Geochimica et Cosmochimica Acta 59, 24: 5081‒5090. doi:http://dx.doi.org/10.1016/0016-7037(95)00342-8 Yi, W.; Budd, P.; McGil, R. A. R.; Young, S. M. M.; Halliday, A.N.; Haggerty, R.; Scaife, B.; Pollard, A.M. 1999. Tin isotope studies of experimental and prehistoric bronzes. In: A. Hauptmann, E.; Pernicka, T. Rehren, Ü. Yalcin, (Eds.): The Beginnings of Metallurgy. Der Anschnitt, Beiheft, 9: 285‒290. Zich, B. 1996. Aunjetitzer Kultur. Vorgeschichtliche Forschungen 20, Berlin. Zich, B. 2006. Die Fürstengräber von Leubingen und Helmsdorf. In: H. Meller (Eds.) Der geschmiedete Himmel. Die weite Welt im Herzen Europas vor 3600 Jahren, Halle a.d.Saale:156‒159. 19 XV CONGRESO INTERNACIONAL SOBRE PATRIMONIO GEOLÓGICO Y MINERO. XIX SESIÓN CIENTÍFICA DE SEDPGYM. LOGROSÁN, 2014. ISBN 978 – 84 – 693 – 1675 – 7. Pp. 1 – 20. 20